主轴转速英语怎么说及英文单词
『壹』 使用讯雷下载是否伤硬盘
迅雷下载是否伤硬盘,首先要弄清他的原理。
迅雷是一款新型的基于P2SP技术的下载软件,它使得您的下载更稳定和更迅速。
要进一步了解迅雷,就要了解到什么是P2SP。
大多数人对P2P并不陌生。P2P的下载概念,点对点嘛,简单点说,就是下载不再象传统方式那样只能依赖服务器,内容的传递可以在网络上的各个终端机器中进行。
P2SP除了包含P2P以外(P2SP的“S”是指服务器),P2SP有效地把原本孤立的服务器和其镜像资源以及P2P资源整合到了一起。也就是说,在下载的稳定性和下载的速度上,都比传统的P2P或P2S有了非常大的提高(两个的综合嘛)。
迅雷既然包含了BT的P2P,下载时自然也有数据读入和写出的过程,对硬盘多多少少都有一些影响。
让伪科学见鬼去吧-硬盘读写频繁是否真的伤害硬盘兼FLASHGET是否真的伤害硬盘V5版
事先说明一下,我这里只是提到FLASHGET,没有提到ED和FTP是因为它们的原理都是一样的,我也懒得一个一个打字而已
我强调一下,我这里只是提到FLASHGET,但是它和ED,FTP的原理是一样的对硬盘的所谓耗损也是一样的。
先引用一下某人的话
为什么频繁读写会损坏硬盘呢?
磁头寿命是有限的,频繁的读写会加快磁头臂及磁头电机的磨损,频繁的读写磁盘某个区域更会使该区温度升高,将影响该区磁介质的稳定性还会导至读写错误,高温还会使该区因热膨涨而使磁头和碟面更近了(正常情况下磁头和碟面只有几个微米,更近还了?),而且也会影响薄膜式磁头的数据读取灵敏度,会使晶体振荡器的时钟主频发生改变,还会造成硬盘电路元件失灵。
任务繁多也会导至IDE硬盘过早损坏,由于IDE硬盘自身的不足,,过多任务请求是会使寻道失败率上升导至磁头频繁复位(复位就是磁头回复到 0磁道,以便重新寻道)加速磁头臂及磁头电机磨损。
我先说一下现代硬盘的工作原理
现在的硬盘,无论是IDE还是SCSI,采用的都是"温彻思特“技术,都有以下特点:
1。磁头,盘片及运动机构密封。
2。固定并高速旋转的镀磁盘片表面平整光滑。
3。磁头沿盘片径向移动。
4。磁头对盘片接触式启停,但工作时呈飞行状态不与盘片直接接触。
盘片:硬盘盘片是将磁粉附着在铝合金(新材料也有用玻璃)圆盘片的表面上.这些磁粉被划分成称为磁道的若干个同心圆,在每个同心圆的磁道上就好像有无数的任意排列的小磁铁,它们分别代表着0和1的状态。当这些小磁铁受到来自磁头的磁力影响时,其排列的方向会随之改变。利用磁头的磁力控制指定的一些小磁铁方向,使每个小磁铁都可以用来储存信息。
盘体:硬盘的盘体由多个盘片组成,这些盘片重叠在一起放在一个密封的盒中,它们在主轴电机的带动下以很高的速度旋转,其每分钟转速达3600,4500,5400,7200甚至以上。
磁头:硬盘的磁头用来读取或者修改盘片上磁性物质的状态,一般说来,每一个磁面都会有一个磁头,从最上面开始,从0开始编号。磁头在停止工作时,与磁盘是接触的,但是在工作时呈飞行状态。磁头采取在盘片的着陆区接触式启停的方式,着陆区不存放任何数据,磁头在此区域启停,不存在损伤任何数据的问题。读取数据时,盘片高速旋转,由于对磁头运动采取了精巧的空气动力学设计,此时磁头处于离盘面数据区0.2---0.5微米高度的”飞行状态“。既不与盘面接触造成磨损,又能可靠的读取数据。
电机:硬盘内的电机都为无刷电机,在高速轴承支撑下机械磨损很小,可以长时间连续工作。高速旋转的盘体产生了明显的陀螺效应,所以工作中的硬盘不宜运动,否则将加重轴承的工作负荷。硬盘磁头的寻道饲服电机多采用音圈式旋转或者直线运动步进电机,在饲服跟踪的调节下精确地跟踪盘片的磁道,所以在硬盘工作时不要有冲击碰撞,搬动时要小心轻放。
原理说到这里,大家都明白了吧?
首先,磁头和数据区是不会有接触的,所以不存在磨损的问题。
其次,一开机硬盘就处于旋转状态,主轴电机的旋转可以达到4500或者7200转每分钟,这和你是否使用FLASHGET或者ED都没有关系,只要一通电,它们就在转.它们的磨损也和软件无关。
再次,寻道电机控制下的磁头的运动,是左右来回移动的,而且幅度很小,从盘片的最内层(着陆区)启动,慢慢移动到最外层,再慢慢移动回来,一个磁道再到另一个磁道来寻找数据。不会有什么大规模跳跃的(又不是青蛙)。所以它的磨损也是可以忽略不记的。
那么,热量是怎么来的呢?
首先是主轴电机和寻道饲服电机的旋转,硬盘的温度主要是因为这个。
其次,高速旋转的盘体和空气之间的摩擦。这个也是主要因素。
而硬盘的读写???
很遗憾,它的发热量可以忽略不记!!!!!!!!!!
硬盘的读操作,是盘片上磁场的变化影响到磁头的电阻值,这个过程中盘片不会发热,磁头倒是因为电流发生变化,所以会有一点热量产生。写操作呢?正好反过来,通过磁头的电流强度不断发生变化,影响到盘片上的磁场,这一过程因为用到电磁感应,所以磁头发热量较大。但是盘片本身是不会发热的,因为盘片上的永磁体是冷性的,不会因为磁场变化而发热。
但是总的来说,磁头的发热量和前面两个比起来,是小巫见大巫了。
热量是可以辐射传导的,那么高热量对盘片上的永磁体会不会有伤害呢?其实伤害是很小的,永磁体消磁的温度,远远高于硬盘正常情况下产生的温度。当然,要是你的机箱散热不好,那可就怪不了别人了。
我这里不得不说一下某人的几个错误:
一。高温是影响到磁头的电阻感应灵敏度,所以才会产生读写错误,和永磁体没有关系。
二。所谓的热膨胀,不会拉近盘体和磁头的距离,因为磁头的飞行是空气动力学原理,在正常情况下始终和盘片保持一定距离。当然要是你大力打击硬盘,那么这个震动......
三。所谓寻道是指硬盘从初使位置移动到指定磁道。所谓的复位动作,并不是经常发生的。因为磁道的物理位置是存放在CMOS里面,硬盘并不需要移动回0磁道再重新出发。只要磁头一启动,所谓的复位动作就完成了,除非你重新启动电脑,不然复位动作就不会再发生。
四。IDE硬盘和SCSI硬盘的盘体结构是差不多的。只是SCSI硬盘的接口带宽比同时代的IDE硬盘要大,而且往往SCSI卡往往都会有一个类似CPU的东西来减缓主CPU的占用率。仅此而已,所以希捷才会把它的SCSI硬盘的技术用在IDE硬盘上。
五。硬盘的读写是以柱面的扇区为单位的。柱面也就是整个盘体中所有磁面的半径相同的同心磁道,而把每个磁道划分为若干个区就是所谓的扇区了。硬盘的写操作,是先写满一个扇区,再写同一柱面的下一个扇区的,在一个柱面完全写满前,磁头是不会移动到别的磁道上的。所以文件在硬盘上的存储,并不是像一般人的认为,是连续存放在一起的(从使用者来看是一起,但是从操作系统底层来看,其存放不是连续的)。所以FLASHGET或者ED开了再多的线程,磁头的寻道一般都不会比你一边玩游戏一边听歌大。当然,这种情况只是单纯的下载或者上传而已,但是其实在这个过程中,谁能保证自己不会启动其它需要读写硬盘的软件?可能很多人都喜欢一边下载一边玩游戏或者听歌吧?更不用说WINDOWS本身就需要频繁读写虚拟内存文件了。所以,用FG下载也好,ED也好,对硬盘的折磨和平时相比不会太厉害的。
六。再说说FLASHGET为什么开太多线程会不好和ED为什么硬盘读写频繁。首先,线程一多,cpu的占用率就高,换页动作也就频繁,从而虚拟内存读写频繁,至于为什么,学过操作系统原理的应该都知道,我这里就不说了。ED呢?同时从几个人那里下载一个文件,还有几个人同时在下载你的文件,这和FG开多线程是类似的。所以硬盘灯猛闪。但是,现在的硬盘是有缓存的,数据不是马上就写到硬盘上,而是先存放在缓存里面,,然后到一定量了再一次性写入硬盘。在FG里面再怎么设置都好,其实是先写到缓存里面的。但是这个过程也是需要CPU干预的,所以设置时间太短,CPU占用率也高,所以硬盘灯也还是猛闪的,因为虚拟文件在读写。
七。硬盘读写频繁,磁头臂在寻道伺服电机的驱动下移动频繁,但是对机械来说这点耗损虽有,其实不大。除非你的硬盘本身就有机械故障比如力臂变形之类的(水货最常见的故障)。真正耗损在于磁头,不断变化的电流会造成它的老化,但是和它的寿命相比......应该也是在合理范围内的。除非因为震动,磁头撞击到了盘体。
八。受高温影响的最严重的是机械的电路,特别是硬盘外面的那块电路板,上面的集成块在高温下会加速老化的。所以IBM的某款玻璃硬盘,虽然有坏道,但是一用某个软件,马上就不见了。再严重点的,换块线路板,也就正常了。就是这个原因.
打了这么多字,实在是太累了。
总之,硬盘会因为环境不好和保养不当而影响寿命,但是这绝对不是软件的错。
FLASHGET也好,ED也好,FTP也好,它们虽然对硬盘的读写频繁,但是还不至于比你一般玩游戏一般听歌对硬盘伤害大.说得更加明白的话,它们对硬盘的所谓耗损,其实可以忽略不记.不要因为看见硬盘灯猛闪,就在那里瞎担心.不然那些提供WEB服务和FTP服务的服务器,它们的硬盘读写之大,可绝非平常玩游戏,下软件的硬盘可比的。
硬盘有一个参数叫做连续无故障时间。它是指硬盘从开始运行到出现故障的最长时间,单位是小时,英文简写是MTBF。一般硬盘的MTBF至少在30000或40000小时。具体情况可以看硬盘厂商的参数说明。这个连续无故障时间,大家可以自己除一下,看看是多少年。然而大家自己想想,自己的硬盘平时连续工作最久是多长时间。
目前我使用的机器,已经连续开机1年了,除了中途有几次关机十几分钟来清理灰尘外,从来没有停过(使用金转6代40G)。另外还有三台使用SCSI硬盘的服务器,是连续两年没有停过了,硬盘的发热量绝非平常IDE硬盘可比(1万转的硬盘啊)。
在这方面,我想我是有发言权的。
最后补充一下若干点:
一。硬盘最好不要买水货或者返修货。水货在运输过程中是非常不安全的,虽然从表面上看来似乎无损伤,但是有可能在运输过程中因为各种因素而对机械体造成损伤。返修货就更加不用说了。老实说,那些埋怨硬盘容易损坏的人,你们应该自己先看看,自己的硬盘是否就是这些货色。
二。硬盘的工作环境是需要整洁的,特别是注意不要在频繁断电和灰尘很多的环境下使用硬盘。机箱要每隔一两个月清理一下灰尘。
三。硬盘的机械最怕震动和高温。所以环境要好,特别是机箱要牢固,以免共震太大。电脑桌也不要摇摇晃晃的。
四。要经常整理硬盘碎片。这里有一个大多数人的误解,一般人都以为硬盘碎片会加大硬盘耗损,其实不是这样的。硬盘碎片的增多本身只是会让硬盘读写所花时间比碎片少的时候多而已,对硬盘的耗损是可以忽略的(我在这里只说一个事实,目前网络上的服务器,它们用得最多的操作系统是UNIX,但是在UNIX下面是没有磁盘碎片整理软件的。就连微软的NT4,本身也是没有的)。不过,因为磁头频繁的移动,造成读写时间的加大,所以CPU的换页动作也就频繁了,而造成虚拟文件(在这里其实准确的说法是换页文件)读写频繁,从而加重硬盘磁头寻道的负荷。这才是硬盘碎片的坏处。
五。在硬盘读写时尽量避免忽然断电,冷启动和做其他加重CPU负荷的事情(比如在玩游戏时听歌,或者在下载时玩大型3D游戏),这些对硬盘的伤害比一般人想象中还要大。原因我就不说了,打字太累。
总之,只要平常注意使用硬盘,硬盘是不会那么快就和我们说BYEBYE的。当然,如果是硬盘本身的质量就不行,那我就无话可说了
『贰』 什么是数控机床
数控机床是数字控制机床的简称,是一种装有程序控制系统的自动化机床。该控制系统能够逻辑地处理具有控制编码或其他符号指令规定的程序,并将其译码,从而使机床动作并加工零件。
与普通机床相比,数控机床有如下特点:
●加工精度高,具有稳定的加工质量;
●可进行多坐标的联动,能加工形状复杂的零件;
●加工零件改变时,一般只需要更改数控程序,可节省生产准备时间;
●机床本身的精度高、刚性大,可选择有利的加工用量,生产率高(一般为普通机床的3~5倍);
●机床自动化程度高,可以减轻劳动强度;
●对操作人员的素质要求较高,对维修人员的技术要求更高。
数控机床一般由下列几个部分组成:
●主机,他是数控机床的主题,包括机床身、立柱、主轴、进给机构等机械部件。他是用于完成各种切削加工的机械部件。
●数控装置,是数控机床的核心,包括硬件(印刷电路板、CRT显示器、键盒、纸带阅读机等)以及相应的软件,用于输入数字化的零件程序,并完成输入信息的存储、数据的变换、插补运算以及实现各种控制功能。
●驱动装置,他是数控机床执行机构的驱动部件,包括主轴驱动单元、进给单元、主轴电机及进给电机等。他在数控装置的控制下通过电气或电液伺服系统实现主轴和进给驱动。当几个进给联动时,可以完成定位、直线、平面曲线和空间曲线的加工。
●辅助装置,指数控机床的一些必要的配套部件,用以保证数控机床的运行,如冷却、排屑、润滑、照明、监测等。它包括液压和气动装置、排屑装置、交换工作台、数控转台和数控分度头,还包括刀具及监控检测装置等。
●编程及其他附属设备,可用来在机外进行零件的程序编制、存储等。
自从1952年美国麻省理工学院研制出世界上第一台数控机床以来,数控机床在制造工业,特别是在汽车、航空航天、以及军事工业中被广泛地应用,数控技术无论在硬件和软件方面,都有飞速发展。
数控机床除了铣镗加工中心,数控铣床,数控车床以外,还有数控钣金设备,包括数控折弯机。
数控设备有通用加工编程NC语言和刀轨编程APT语言。
普通数控铣床不加刀库。装了刀库的叫加工中心。好处就是可以不用换机器,减少重新装夹累计误差和不同的机床误差。
3轴机床(工作台X.Y向动,刀轴Z向动)最广泛,用于加工模具等带复杂曲面的小批量产品。
4轴(刀轴摆动)可在一个工位上,加工三轴机床无法加工的倒扣面,死角。
4轴(加旋转轴),类似于车床的旋转轴加工方式。可将零件绕某一轴翻转任意角度进行加工(一次装夹,加工上下前后4个工位)。减少了夹具和重复安装误差。优势在于加工轴类、盘类、人工骨骼等。
5轴(刀轴两向摆)可以在一个工位上,一次加工产品上所有无法加工的倒扣面和死角。而对应的4轴只能分两次加工。
五轴(工作台两向摆动/转动)可加工所有未被夹具包裹的面。理论上只要两个工位即可。而且刀轴永远垂直于加工面。精度极高,质量极好。
五轴(刀轴与工作台组合摆动)也有独到之处,能够达到5轴(刀轴两向摆)相似的效果。
七轴以上联动机床(或叫并联机床)是近些年出现的高科技机床。用于加工飞机发动机涡轮叶片,潜艇螺旋桨等军方和航空航天高精度曲面。机床有7个自由度。能够达到的加工精度是普通多轴高精度数控机床所无法比拟的。而且表面质量超棒。
这是制造技术发展过程中的一个重大突破,标志着制造领域中数控加工时代的开始。数控加工是现代制造技术的基础,这一发明对于制造行业而言,具有划时代的意义和深远的影响。世界上主要工业发达国家都十分重视数控加工技术的研究和发展。