当前位置:首页 » 英文单词 » 核膜英语怎么说及英语单词

核膜英语怎么说及英语单词

发布时间: 2024-10-20 17:50:14

㈠ 5分钟内哈,克隆资料,短点的,好抄~我明交

胚胎发育过程是核质之间、细胞与细胞及细胞与胞外基质按严格的时空秩序相互作用的结果。从全能或多能胚胎干细胞分化为具有独特功能的体细胞,完全取决于基因在时间与地点上的选择性表达。对细胞分化和发育来说,最重要的不是个别基因的表达,而是整个基因网络在时间和空间上的紧密联系和配合。组成包括人体在内的高等动物机体的亿万个细胞,都是由一个受精卵发育而来的。像胚胎干细胞一样,分化了的体细胞仍然具有一整套完整的遗传信息。过去人们认为,细胞的分化程度越高,它指导早期胚胎发育成新个体的能力就越低,高度分化的体细胞甚至完全不具备这种能力。近几年体细胞动物克隆技术上取得的突破,不仅给人们的观念带来了很大的改变,而且由于它所蕴藏的商业和社会价值,在全世界引起了轰动。

克隆技术在现代生物学中被称为“生物放大技术”,它已经历了三个发展时期:第一个时期是微生物克隆,即用一个细菌很快复制出成千上万个和它一模一样的细菌,而变成一个细菌群;第二个时期是生物技术克隆,比如用遗传基因――DNA克隆;第三个时期是动物克隆,即由一个细胞克隆成一个动物。克隆绵羊“多利”由一头母羊的体细胞克隆而来,使用的便是动物克隆技术。

在自然界,有不少植物具有先天的克隆本能,如番薯、马铃薯、玫瑰等的插枝繁殖的植物。而动物的克隆技术,则经历了由胚胎细胞到体细胞的发展过程

1. 人类进行克隆的历史

公元前5000年·谷物选种

人类祖先发现,最茁壮的植株的种子培植出的谷物也更优良。这是人类开始按照人的意图控制生命的开端,这也是克隆技术最终目标的最初体现。

1952年·克隆蝌蚪

小小的蝌蚪改写了生物技术发展史,成为世界上第一种被克隆的动物。美国科学家罗伯特·布里格斯和托玛斯·金用一只蝌蚪的细胞创造了与原版完全一样的复制品。

1972年·基因复制

克隆技术精细到以单个基因复制为单位。科学家将某种特定基因单离出来,将它与某有机体(最初是一种酵母)结合,有机体将新基因融入自己的DNA结构后再繁殖,产生出理想基因的复制品。

1978年·第一例试管婴儿出生

整个世界吵嚷着想要目睹人类第一个体外受精婴儿路易斯的“庐山真面目”。英国医生用丈夫的精子在一个试管内使卵子受精,然后将胚胎植入健康母亲的子宫内。

1997年·多利,你好!

1996年,世界第一例从成年动物细胞克隆出的哺乳动物绵羊多利诞生。这个秘密直到1997年2月才向世人公布。苏格兰胚胎学家伊恩·威尔姆特和同事用一只成年母羊乳房内取出的细胞克隆出多利。

1998年·克隆批量化

美国夏威夷大学的科学家用成年细胞克隆出50多只老鼠,并接着培育出3代遗传特征完全一致的实验鼠。与此同时,其它几个私立研究机构也用不同的方法成功克隆出小牛。其中最引人注目的是,日本人用一个成年母牛的细胞培育出8只遗传特征完全一样的小牛,成功率高达80%。

2000年·人类近亲被克隆

美国俄勒冈的研究者用与克隆多利羊截然不同的方法克隆出猴子,科学家将一个仅包含8个细胞的早期胚胎分裂为4份,再将它们分别培育出新胚胎,惟一成活的只有Tetra。与多利不同的是,tetra既有母亲也有父亲,但它只是人工4胞胎中的一个。此外,帮助培育出多利羊的生物技术公司宣布克隆出5只小猪仔。该公司宣称,克隆猪终将成为人类移植器官的“加工厂”。

2001年·克隆人?

3月,美国生殖科学家帕纳伊奥提斯·扎沃斯和一个国际研究小组宣布,数百对夫妇已自愿报名参加培育克隆婴孩的实验。该小组宣称最早至2003年便可帮助不孕夫妇培育克隆婴儿。1月,英国成为全球第一个有效地使克隆人类胚胎合法化的国家。政府通过一项富争议性的法案,目的在于允许对人类胚胎内的根细胞进行科学实验。该法案要求克隆体必须在诞生后14日内被毁灭。培育克隆婴儿仍属非法行

2. 动物克隆的理论基础

在许多人眼里,体细胞克隆羊多莉 (Dolly) 的诞生是克隆技术的开始。其实不然。“克隆 (clone)”一词来源于希腊语,原意是用于扦插的枝条,也就是指无性繁殖。克隆在植物界的应用已有上千年的历史,理论上的突破则是本世纪的事。1902 年德国植物学家 Haberlandt指出,植物的体细胞具有母体全部的遗传信息,并具有发育成为完整个体的潜能,因而每个植物细胞都可像胚胎细胞那样,经离体培养再生成为完整植株。这就是所谓的细胞全能性。许多科学家为证实植物细胞的全能性作出了不懈的努力。1958 年,Steward成功地将一个胡萝卜细胞试管培养,长成了一株具有根、茎、叶等器官的完整植株。1964年Guha 和 Maheshwari利用毛叶曼陀罗的花药培育出单倍体植株。这样,植物细胞全能性获得了充分的论证。建立在此基础上的组织培养技术也得到迅速发展。

与植物细胞不同,在动物发育过程中分化了的细胞不能再产生完整的充分分化的个体。然而,动物胚胎的生长、分化和发育是否造成体细胞基因组的不可逆性修饰,即在发育过程中分化了的细胞是否具有与受精卵相同的核等价性 (nuclear equivalency) 或基因组连续性,一直是发育生物学要解决的问题。早在30 年代,著名的胚胎学家 Spemann 就已经提出“分化了的细胞核移入卵子中能否指导胚胎发育”这样的设想。用两栖类动物进行的一些克隆实验表明,早期胚胎细胞核经移植可产生成熟的动物个体,而从蝌蚪及成体动物细胞中取出的细胞核经移植生成的克隆动物最晚只能发育至蝌蚪期。胚胎分割及胚胎细胞核移植克隆动物已在许多物种中获得了成功。体细胞克隆绵羊、小鼠、牛 及山羊的成功,证明高度分化的细胞核仍具有全能性。

3. 体细胞克隆羊及小鼠实验成功分析

克隆羊Dolly 是世界上第一只由成体细胞通过无性过程产生的哺乳动物。

1996年7月里的一天,对英国爱丁堡罗斯林(Roslin)研究所由伊恩·维尔穆特(I. Wilmut)领导的科学研究小组全体成员来讲,是一个令人激动的日子。对全世界来说,也是值得庆贺的一天。因为在这一天,一只妊娠了148天,体重为6.6千克, 编号为6LL3的小羊来到了这个世界。这只羊的身世与众不同,它既无父亲,又无母亲,它是科学家们用克隆技术复制出来的一只小绵羊。经过几个月的精心呵护,这只身世不凡的小绵羊茁壮成长,并获得了一个动听的名字——多莉(Dolly)。

1997年2月23日,伊恩. 维尔穆特科学研究小组向全世界宣布了他们的研究结果,英国的“自然”杂志(Nature)于1997年2月27日全文刊登了他们的实验结果。这一消息立刻轰动了全世界。各国的报刊,电台,电视台等媒体对此结果纷纷进行了报道和评述。科学家和大学教授也纷纷被邀请到各种媒体讲解,评论“多莉”的身世和它的出生对科学研究、经济发展和社会进步的影响。许多国家的政府官员也纷纷发表讲话,明令不准将“多莉”克隆技术用于人类。由于各种媒体的大量传播,一个新的名词已为广大民众所逐渐知晓的“克隆”。

早在20世纪50年代,美国的科学家以两栖动物和鱼类作研究对象,首创了细胞核移植技术。1986年,英国科学家魏拉德森用胚胎细胞克隆出一只羊,以后又有人相继克隆出牛、鼠、兔、猴等动物。这些克隆动物的诞生,均是利用胚胎细胞作为供体细胞进行细胞核移植而获得成功的。

而克隆绵羊“多利”是用乳腺上皮细胞(体细胞)作为供体细胞进行细胞核移植的,它翻开了生物克隆史上崭新的一页,突破了利用胚胎细胞进行核移植的传统方式,使克隆技术有了长足的进展。

克隆绵羊“多利”没有父亲,多莉”的产生与三只母羊有关;一只是怀孕三个月的芬兰多塞特母绵羊,两只是苏格兰黑面母绵羊。芬兰多塞特母绵羊提供了全套遗传信息,即提供了细胞核(称之为供体);一只苏格兰黑面母绵羊提供无细胞核的卵细胞;另一只苏格兰黑面母绵羊提供羊胚胎的发育环境—子宫,是“多莉”羊的“生”母。其整个克隆过程简述如下:

1、从芬兰多塞特母绵羊的乳腺中取出乳腺细胞,将其放入低浓度的营养培养液中,细胞逐渐停止了分裂,此细胞称之为供体细胞;

2、从一头苏格兰黑面母绵羊的卵巢中取出未受精的卵细胞,并立即将其细胞核除去,留下一个无核的卵细胞,此细胞称之为受体细胞;

3、利用电脉冲的方法,使供体细胞和受体细胞发生融合,最后形成了融合细胞,由于电脉冲还可以产生类似于自然受精过程中的一系列反应,使融合细胞也能象受精卵一样进行细胞分裂、分化,从而形成胚胎细胞;

4、将胚胎细胞转移到另一只苏格兰黑面母绵羊的子宫内,胚胎细胞进一步分化和发育,最后形成一只小绵羊。

出生的“多莉”小绵羊与多塞特母绵羊具有完全相同的外貌。“多莉”出生后生长正常,并于1997年底与一头威尔士高山羊自然交配怀孕。在1998年4月13日凌晨4时生下了一只雌性的体重为2.7千克的小羊羔,取名为“邦妮(Bonnie)”。这说明生世不凡的“多莉”具有正常的生育能力。随着“多莉”的诞生,不同的实验室也宣称成功地克隆出了猪、猴和牛等,他们所用的生物材料也都是体细胞。

无性繁殖现象在低等植物中是存在的,而按照哺乳动物界的规律,动物的繁衍要由两性生殖细胞来完成,由于父体和母体的遗传物质在后代体内各占一半,因此后代绝对不是父母的复制品。而克隆绵羊的诞生,意味着人类可以利用哺乳动物的一个细胞大量生产出完全相同的生命体,完全打破了亘古不变的自然规律。这是生物工程技术发展史中的一个里程碑,也是人类历史上的一项重大科学突破。

在Dolly 诞生后的一年多时间里,全世界掀起了一股克隆热,并引起了一些激烈的争论和对Dolly身份的质疑。1998 年7 月出版的《Nature》报道两个独立的研究小组分别对Dolly 的血样、供体母羊冷冻组织及其细胞培养物进行卫星DNA 分析和DNA指纹分析,确认三者的一致性,证明Dolly 确实是体细胞克隆动物。在同期《Nature》上,美国夏威夷大学Wakayama 等人报道,由小鼠卵丘细胞 (cumulus cells) 克隆了27 只存活小鼠,其中7只是由克隆小鼠再次克隆的后代。

两栖类和哺乳类核移植实验发现,经核移植的卵母细胞不能正常发育的一个关键问题是供体核和受体卵母细胞之间的细胞周期不相容性。Wilmut 等的成功之处就在于他们找到了一种使供体核和受体卵母细胞更相容的方法。他们通过血清饥饿法使供体核细胞处于二倍体的G0 期,这样处理的供体核在DNA复制的时间上就与处于中期II的受体卵母细胞同步。从建立正确的染色体倍性 (ploidy) 这个角度来看,供体核处于G1 期也可以获得克隆动物。稳定表达b -半乳糖苷酶-新霉素基因的胎儿成纤维细胞作核供体,获得克隆牛证明了这一点。

人们一般认为,供体核和卵母细胞组成的重组胚胎的发育过程与正常状况受精卵相仿。 羊胚胎基因组的转录一直到8~16个细胞才开始,这种转录时间的差异在理论上将允许胚胎有充裕的时间对植入的成体羊细胞核进行重新编程,使其进入胚胎发育期。由于不同的物种胚胎转录的起始时间各异,所以克隆的难易也不同。以往的研究发现,在小鼠的克隆过程中,基因组很早就被激活,移植的细胞核没有足够的时间进行重新编程。因此,许多研究者认为小鼠是最难克隆的动物之一。

Wakayama 等人的工作改变了这种观点。与Wilmut 等的方法相比,Wakayama 等采用了一种新的、相对简单的克隆技术。Dolly 是采用母羊的乳腺组织细胞经过“饥饿“ 培养,与去核的卵细胞进行电融合,促使融合细胞中遗传物质的重编程 (reprogramming), 然后逐步发育成胚胎。克隆小鼠采用核移植的方法,将自然状态下处于G0 期的卵丘细胞作核供体,直接注入去核的卵细胞。小鼠克隆过程中核移植后的重组胚胎放置0~6 小时后再激活,也有异于Wilmut 等用电刺激法同时融合重组胚胎和激活胚胎。Dolly 的产生过程中遗传物质的重编程和卵细胞的激活是电刺激法,而小鼠的克隆则采用在培养基中添加锶离子 (Sr2+) 和细胞松弛素B 的化学方法激活重组胚胎。

4. 动物克隆技术的应用

动物克隆近几年取得的一些突破性进展,为动物发育过程中基因表达的调控及发育生物学、遗传学等相关学科的发展必将产生深远的影响。虽然目前这种方法尚不成熟,但它已显示出诱人的应用前景。

动物克隆技术将首先应用于医药领域。利用体细胞供体经核移植生产转基因动物,可望降低生产成本。到目前为止,产生转基因动物的方法仍主要是1985 年Hammer 等建立的原核显微注射法。但是,这种方法只能使大约5%的动物携带外源基因。外源基因整合入动物基因组是个随机的过程,这导致外源基因在许多转基因动物系中的表达量不够高,而且因整合进生殖细胞的机率低而难以遗传给下一代。Schnieke 等发现,利用体细胞克隆技术生产含人凝血因子 IX 的转基因羊比原核显微注射法要有效得多[8]。其中,两者最显著的差异是体细胞克隆中的受体母羊全都携带外源基因,而原核显微注射法会产生许多不带外源基因的羊羔。这是由于,原核微注射法中所用胚胎在体外培养的时间较短,在此期间被检测为阳性的转基因可能会在以后的发育过程中丢失。用作核移植供体的细胞在体外培养的时间则较长,有较多的检测机会。另外,显微注射法制备的转基因动物的性别只有等到动物出生后才能得知, 而核移植可以通过鉴别核供体的核型而预先得知转基因动物的性别,可选择性地制备雌性的转基因动物, 有利于在母乳中表达外源基因。

克隆技术除了可以生产各种医用人体蛋白外,对人类的细胞和组织治疗也大有好处。利用克隆技术,可以用患者本人细胞培育出新组织,用来治疗糖尿病、帕金森氏症、神经损伤等多种疾病。用这种方法培育出的组织具有与患者正常组织完全相同的基因构成,因此不会产生免疫排斥反应。但是这些都涉及到克隆人这个敏感话题,目前克隆人在许多国家是法律禁止的。随着人类胚胎干细胞培养技术的完善,目前已有两家美国公司开始研究利用克隆技术培育人胚胎,希望大批量生产治疗疾病的干细胞。事实上,几年前人们就曾把人胎儿神经组织用来治疗帕金森氏症。考虑到伦理上的原因,人们也可以用克隆动物的胚胎干细胞作异源移植,以解决人类移植器官供求矛盾。

动物克隆技术还有助于加速动物育种的进程。利用优良动物品种的体细胞作核供体克隆动物,可以避免自然条件下选种所受到的动物生育周期和生育效率的限制,从而大大缩短育种年限,提高育种效率。动物克隆技术用于拯救濒危动物也受到广泛的关注。中国科学院动物研究所陈大元研究员提出用动物克隆技术拯救大熊猫的计划,在国内外均引起一定的反响。

5. 动物克隆技术的不足及未来发展方向

动物克隆技术虽然取得了一定的进展,在生物医药领域也得到了初步应用。但是,该技术目前还很不完善。存活率低是当今核移植技术的最大缺陷。它突出表现为:孕期流产率高,围产期死亡率高,新生儿体重较重及产生后对环境的适应性较差。以成体细胞核作核供体问题更为严重。最近,Shiels 等报道克隆羊的端粒较同年羊短。

Renard 等报道,体细胞核移植可能影响克隆动物免疫系统的正常发育。他们用胚胎细胞克隆牛的耳细胞通过核移植克隆出一头牛。牛犊看起来很健康,但出生一个半月后,它体内的淋巴细胞和红血球急剧减少,不久就死于贫血。尸体解剖发现,该牛犊脾脏、胸腺和淋巴结等淋巴组织都没有得到正常发育。

导致动物克隆存活率低和异常发育的原因很多,缺乏基础理论支撑是其中之一。动物克隆技术的不断完善,还需要分子遗传学、细胞学、发育生物学等相关基础学科的进一步研究和发展。迄今为止,人们虽然在动物克隆过程中已经积累了不少数据,但一些很基本的问题仍亟需解决。

基因组重新编程的机制尚不清楚。人们虽然观测到核移植后细胞核的激活与早期胚胎原核发育类似,但较详细的信息仍不甚明了。其中,成熟促进因子(maturation promoting factor,MPF)、核膜破裂(nuclear envelope breakdown,NEBD) 和早熟染色体凝集 (premature chromosome condensation, PCC) 在基因组重编过程中的作用还需明确。

基因印记 (imprinting) 对核移植后基因组重新编程的影响。基因印记现象在哺乳动物的发育过程中普遍存在,它是指基因的表达与否取决于它们是在父源染色体上还是母源染色体上。有些印记基因只从母源染色体上表达,而有些则只从父源染色体上表达。基因印记与动物克隆技术的成功及不足有何关系值得深入研究。

动物克隆种属及细胞差异的原因。克隆不同种属的动物难易有别,其中的原因目前人们还不清楚。目前可以用作体细胞核移植核供体的细胞类型还较少。Wakayama 等用处于 G0/G1期的卵丘细胞克隆得到小鼠,而他们采用处于G0 期的足细胞 、神经细胞作核供体进行的克隆实验均未获得成活个体,这显示供体核处于G0 期并非保证胚胎发育的充分条件。Dominko等发现去核的牛卵细胞能使来自羊、猴、鼠、猪等不同种属的细胞核激活,并在体外发育为相应的胚胎,但目前还没有一个可继续发育为完整的动物个体。如果这项工作能成功,将十分有利于濒危动物的保护。

动物克隆技术条件的优化还没有解决。如核供体和卵细胞的选材、核质比的选择、重组胚胎的激活方式、是否需要作连续核移植等。

克隆技术被誉为“一座挖掘不尽的金矿”,它在生产实践上具有重要的意义,潜在的经济价值十分巨大。首先,在动物杂种优势利用方面,较常规方法而言,哺乳动物克隆技术费时少、选育的种畜性状稳定;其次,克隆技术在抢救濒危珍稀物种、保护生物多样性方面可发挥重要作用,即使在自然交配成功率很低的情况下,科研人员也可以从濒危珍稀动物个体身上选择适当的体细胞进行无性繁殖,达到有效保护这些物种的目的。

动物克隆技术的重大突破,也带来了广泛的争议。克隆技术对人类来说,是一把“双刃剑”。一方面,它能给人类带来许多益处――诸如保持优良品种、挽救濒危动物、利用克隆动物相同的基因背景进行生物医学研究等;另一方面,它将对生物多样性提出挑战――生物多样性是自然进化的结果,也是进化的动力,有性繁殖是形成生物多样性的重要基础,而“克隆动物”则会导致生物品系减少,个体生存能力下降。

更让人不寒而栗的是,克隆技术一旦被滥用于克隆人类自身,将不可避免地失去控制,带来空前的生态混乱,并引发一系列严重的伦理道德冲突。世界各国政府和科学界已对此高度关注,采取立法等措施明令禁止用克隆技术制造“克隆人”,以保证克隆只用于造福人类,而绝非复制人类。

综上所述,动物克隆研究已在理论基础、技术优化及实际应用等方面取得很大的进展。但该技术目前还很不完善,相关理论研究还很薄弱,人们要提高动物克隆的成功率还需不懈的努力。另外,克隆动物与正常胚胎的发育有何异同,也值得深入研究。这些问题的解决,将有助于加深人们对动物胚胎发育过程中分子机制的认识。

㈡ PL是什么细菌的缩写

细菌 bacterium,pl.bacteria
一种单细胞生物。菌体宽为0.2—10微米,一般均为0.5—2微米。细胞外侧有细胞壁,并各具特殊的形态,如球状、杆状和螺旋状等。细胞壁的组成可在革蓝氏染色中得到反映:革兰氏阳性者,其主要成分是肽聚糖或磷壁质;革兰氏阴性者则是由比较少量的肽聚糖、脂多糖和脂蛋白组成。细菌虽是单细胞,但有时细胞集聚在一起而形成特定的形状;也有时连成一串形成的丝状体分支,或丝状体被包在一个鞘中,而几乎看不到细胞的分化现象。细胞周围分泌的粘液质,有的是多肽,有的是多糖。当粘液质把细胞包围起来时就形成荚膜。细菌的细胞内结构呈现原核生物的特征,即核物质(DNA)不和碱性蛋白结合,且因无核膜而直接存在于细胞质中。细胞中无叶绿体、线粒体和内质网结构,脂质体为70S型。观察不到原形质流动。在细胞膜中含有与呼吸、光合作用有关的酶系或是光合色素。有时细胞膜常凹陷于细胞质中,形成一种称为间体(mesosome)的结构或层状结构。细胞通常是以二分裂法进行增殖的,间或出现一些不等分裂和出芽的种类。有一部分细菌还形成芽孢。在某些细菌中还发生接合现象,可以看到基因的转移和重组。然而即使在这种情况下,也并不发生细胞质的混合,而且基因的移动也多是部分的。有些细菌的基因移动不是依靠接合,而是借助于噬菌体,或是直接依靠DNA分子进行。有一部分细菌是依靠一条或多条鞭毛进行运动的。鞭毛的结构很简单,没有在真核生物中看到的那种9+2的结构。也有一些不依靠鞭毛而进行滑行运动的细菌。其营养要求也各不相同,有的在只有无机物组成的培养基中生长;有的需要多种有机化合物和其他生长因子;有的是寄生性而难以在实验室进行纯培养等等。在寄生性细菌中,有些是对动植物具有病原性的。在进行光合成的细菌中(光合细菌),不含有通常的叶绿素a、b,而含有吸收更长光波的菌绿素a、b、c、d等。光合作用只在厌氧条件下发生,另外水不是作为还原CO2的电子供体,而是利用H2S.H2或简单的有机物作为电子供体。在细菌的光合成中不发生氧。根据氧对细菌生长的影响,可以分为好氧性细菌和厌氧性细菌及兼性厌氧性细菌。细菌的发酵方式也各具有其特征,除乙醇发酵、乳酸发酵外,还有丙酮、丁醇发酵、甲烷发酵以及混合有机酸发酵等。在氧呼吸方面,既有经由通常的EMP途径和三羧循环的,也有只经由上述之一或二者都缺乏的细菌。在电子传递系统也有不少是和典型的线粒体型不同的。关于细胞色素,往往含有特异的细胞色素a1、d、o等。此外,有些细菌还进行一般在真核生物中难以看到的代谢,例如利用硫化合物、硝酸盐、铵盐等无机氧化能量(无机化能营养生物)进行的CO2固定、硝酸呼吸、脱氮作用、固氮作用等。关于细菌的生长,它不仅可以在60—70℃的高温和有25—30%的高浓度食盐存在以及pH2左右的酸性等不适于一般生物生长的环境下生长,而且在这样的环境下,有的反而生长的更好。

㈢ 如何快速分辨细胞分裂的时期

从以下几步进行辨析:
一看染色体数目,若染色体数目,奇数为减数第二次分裂,且无同源染色体存在。
如果是偶数,二看有无同源染色体,无同源染色体为减数第二次分裂,
如果有同源染色体,三看同源染色体的行为,出现联会,四分体,同源染色体分离,同源染色体着丝点位于赤道板两侧,则为减速第一次分裂,无上诉同源染色体的行为,则为有丝分裂。
你做题的时候,分这三步看,熟练了,一看题就可以辨出来了。

热点内容
你最喜欢哪个月份用英语怎么说 发布:2024-10-21 05:55:46 浏览:652
喜欢收藏体育用品英语怎么说 发布:2024-10-21 05:54:15 浏览:452
他喜欢美术用英语怎么说 发布:2024-10-21 05:34:48 浏览:524
英语第一名怎么翻译 发布:2024-10-21 04:46:33 浏览:680
对这些学生来说用英语怎么说 发布:2024-10-21 04:46:32 浏览:555
瘦的单词用英语怎么写 发布:2024-10-21 04:40:01 浏览:566
但是她不喜欢用英语怎么说 发布:2024-10-21 04:32:50 浏览:641
意大利留学生英语怎么说 发布:2024-10-21 04:29:32 浏览:640
北京以什么而著名英语怎么翻译 发布:2024-10-21 04:28:14 浏览:268
五阶码英语怎么说及英文单词 发布:2024-10-21 04:23:46 浏览:286