刃口载荷英语怎么说及英文翻译
⑴ 求模具中英文翻译,谢谢!
我也不是很懂英文,我用翻译软件翻的,你参考下:
Through hole
The technical requirements
Unmarked tolerance by GB/T1804-M
Not note shape chamfer C1-C1.5, not C1 injection orifice chamfering
M hole unmarked unmarked tolerance -0.2, PIN hole unmarked tolerance -0.02
Blade surface does not allow the chamfer, the edge and a proct contact surfaces should be polished R0.8
Heat treatment of 58-62 HRC
The positioning pin hole
In the corresponding position of engraving, and number of
Unmarked dimensions and tolerances of the procurement according to the standard
Did not note the size according to 3D proction
⑵ 哪位好心人帮我用英文翻译一下 谢谢
This design for the connection of the gasket with cold stamping design, according to design the size of the parts, materials, such as mass proction requirements, the first part manufacturability analysis, to determine the blanking process scheme and die structure scheme, and then through the process design and calculation, determine the layout and cutting board, calculate impact pressure and pressure center, primary press, calculate convex and concave die hole size and tolerance, and in the end the design selection of parts and components, to press for check, drawing die assembly drawing, as well as to mould the major parts of the processing procere for preparation. In the structure design, mainly to the punch and die and punch, die, positioning parts, discharge and end a device, formwork, stamping equipment, fasteners and so on design, for some parts choose standard ?
摘要
本设计为连接垫片的冷冲压设计,根据设计零件的尺寸、材料、批量生产等要求,首先分析零件的工艺性,确定冲裁工艺方案及模具结构方案,然后通过工艺设计计算,确定排样和裁板,计算冲压力和压力中心,初选压力机,计算凸、凹模刃口尺寸和公差,最后设计选用零、部件,对压力机进行校核,绘制模具总装草图,以及对模具主要零件的加工工艺规程进行编制。其中在结构设计中,主要对凸模、凹模、凸凹模、定位零件、卸料与顶出件装置、模架、冲压设备、紧固件等进行设计,对于部分零件选用的是标准件,就没深入设计,并且在结构设计的同时,对部分零件进行加工工艺分析,最终才完成这篇毕业设计,
关键词:模具;冲裁件;凸模;凹模;凸凹模;
⑶ 求一篇英文文章及其中文翻译。。
Introction of Machining
Have a shape as a processing method, all machining process for the proction of the most commonly used and most important method. Machining process is a process generated shape, in this process, Drivers device on the workpiece material to be in the form of chip removal. Although in some occasions, the workpiece under no circumstances, the use of mobile equipment to the processing, However, the majority of the machining is not only supporting the workpiece also supporting tools and equipment to complete.
Machining know the process has two aspects. Small group of low-cost proction. For casting, forging and machining pressure, every proction of a specific shape of the workpiece, even a spare parts, almost have to spend the high cost of processing. Welding to rely on the shape of the structure, to a large extent, depend on effective in the form of raw materials. In general, through the use of expensive equipment and without special processing conditions, can be almost any type of raw materials, mechanical processing to convert the raw materials processed into the arbitrary shape of the structure, as long as the external dimensions large enough, it is possible. Because of a proction of spare parts, even when the parts and structure of the proction batch sizes are suitable for the original casting, Forging or pressure processing to proce, but usually prefer machining.
Strict precision and good surface finish, Machining the second purpose is the establishment of the high precision and surface finish possible on the basis of. Many parts, if any other means of proction belonging to the large-scale proction, Well Machining is a low-tolerance and can meet the requirements of small batch proction. Besides, many parts on the proction and processing of coarse process to improve its general shape of the surface. It is only necessary precision and choose only the surface machining. For instance, thread, in addition to mechanical processing, almost no other processing method for processing. Another example is the blacksmith pieces keyhole processing, as well as training to be concted immediately after the mechanical completion of the processing.
Primary Cutting Parameters
Cutting the work piece and tool based on the basic relationship between the following four elements to fully describe : the tool geometry, cutting speed, feed rate, depth and penetration of a cutting tool.
Cutting Tools must be of a suitable material to manufacture, it must be strong, tough, hard and wear-resistant. Tool geometry -- to the tip plane and cutter angle characteristics -- for each cutting process must be correct.
Cutting speed is the cutting edge of work piece surface rate, it is inches per minute to show. In order to effectively processing, and cutting speed must adapt to the level of specific parts -- with knives. Generally, the more hard work piece material, the lower the rate.
Progressive Tool to speed is cut into the work piece speed. If the work piece or tool for rotating movement, feed rate per round over the number of inches to the measurement. When the work piece or tool for reciprocating movement and feed rate on each trip through the measurement of inches. Generally, in other conditions, feed rate and cutting speed is inversely proportional to。
Depth of penetration of a cutting tool -- to inches dollars -- is the tool to the work piece distance. Rotary cutting it to the chip or equal to the width of the linear cutting chip thickness. Rough than finishing, deeper penetration of a cutting tool depth.
Wears of Cutting Tool
We already have been processed and the rattle of the countless cracks edge tool, we learn that tool wear are basically three forms : flank wear, the former flank wear and V-Notch wear. Flank wear occurred in both the main blade occurred vice blade. On the main blade, shoulder removed because most metal chip mandate, which resulted in an increase cutting force and cutting temperature increase, If not allowed to check, That could lead to the work piece and the tool vibration and provide for efficient cutting conditions may no longer exist. Vice-bladed on, it is determined work piece dimensions and surface finish. Flank wear size of the possible failure of the proct and surface finish are also inferior. In most actual cutting conditions, as the principal in the former first deputy flank before flank wear, wear arrival enough, Tool will be effective, the results are made unqualified parts.
As Tool stress on the surface uneven, chip and flank before sliding contact zone between stress, in sliding contact the start of the largest, and in contact with the tail of zero, so abrasive wear in the region occurred. This is because the card cutting edge than the nearby settlements near the more serious wear, and bladed chip e to the vicinity of the former flank and lost contact wear lighter. This results from a certain distance from the cutting edge of the surface formed before the knife point Ma pit, which is usually considered before wear. Under normal circumstances, this is wear cross-sectional shape of an arc. In many instances and for the actual cutting conditions, the former flank wear compared to flank wear light, Therefore flank wear more generally as a tool failure of scale signs. But because many authors have said in the cutting speed of the increase, Maeto surface temperature than the knife surface temperatures have risen faster. but because any form of wear rate is essentially temperature changes by the significant impact. Therefore, the former usually wear in high-speed cutting happen.
The main tool flank wear the tail is not processed with the work piece surface in contact, Therefore flank wear than wear along with the ends more visible, which is the most common. This is because the local effect, which is as rough on the surface has hardened layer, This effect is by cutting in front of the hardening of the work piece. Not just cutting, and as oxidation skin, the blade local high temperature will also cause this effect. This partial wear normally referred to as pit sexual wear, but occasionally it is very serious. Despite the emergence of the pits on the Cutting Tool nature is not meaningful impact, but often pits graally become darker If cutting continued the case, then there cutter fracture crisis.
If any form of sexual allowed to wear, eventually wear rate increase obviously will be a tool to destroy failure destruction, that will no longer tool for cutting, cause the work piece scrapped, it is good, can cause serious damage machine. For various carbide cutting tools and for the various types of wear, in the event of a serious lapse, on the tool that has reached the end of the life cycle. But for various high-speed steel cutting tools and wear belonging to the non-uniformity of wear, has been found : When the wear and even to allow for a serious lapse, the most meaningful is that the tool can re-mill use, of course, In practice, cutting the time to use than the short time lapse. Several phenomena are one tool serious lapse began features : the most common is the sudden increase cutting force, appeared on the work piece burning ring patterns and an increase in noise.
The Effect of Changes in Cutting Parameters on Cutting Temperatures
In metal cutting operations heat is generated in the primary and secondary deformation zones and this results in a complex temperature distribution throughout the tool, workpiece and chip. A typical set of isotherms is shown in figure where it can be seen that, as could be expected, there is a very large temperature gradient throughout the width of the chip as the workpiece material is sheared in primary deformation and there is a further large temperature in the chip adjacent to the face as the chip is sheared in secondary deformation. This leads to a maximum cutting temperature a short distance up the face from the cutting edge and a small distance into the chip.
Since virtually all the work done in metal cutting is converted into heat, it could be expected that factors which increase the power consumed per unit volume of metal removed will increase the cutting temperature. Thus an increase in the rake angle, all other parameters remaining constant, will rece the power per unit volume of metal removed and cutting temperatures will rece. When considering increase in undeformed chip thickness and cutting speed the situation is more comples. An increase in undeformed chip thickness and cutting speed the situation is more complex. An increase in undeformed chip thickness tends to be a scale effect where the amounts of heat which pass to the workpiece, the tool and chip remain in fixed proportions and the changes in cutting temperature tend to be small. Increase in cutting speed, however, rece the amount of heat which passes into the workpiece and this increase the temperature rise of the chip in primary deformation. Further, the secondary deformation zone tends to be smaller and this has the effect of increasing the temperatures in this zone. Other changes in cutting parameters have virtually no effect on the power consumed per unit volume of metal removed and consequently have virtually no effect on the power consumed per unit volume of metal removed and consequently have virtually no effect on the cutting temperatures. Since it has been shown that even small changes in cutting temperature have a significant effect on tool wear rate, it is appropriate to indicate how cutting temperatures can be assessed from cutting data.
The most direct and accurate method for measuring temperatures in high-speed-steel cutting tools is that of Wright&Trent which also yields detailed information on temperature distributions in high-speed-steel tools which relates microstructural changes to thermal history.
Trent has described measurements of cutting temperatures and temperature distributions for high-speed-steel tools when machining a wide range of workpiece materials. This technique has been further developed by using scanning electron micros to study fine-scale microstructural changes srising from over tempering of the tempered martensitic matrix of various high-speed-steels. This technique has also been used to study temperature distributions in both high-speed-steel single point turning tools and twist drills.
Automatic Fixture Design
Assembly equipment used in the traditional synchronous fixture put parts of the fixture mobile center, to ensure that components from transmission from the plane or equipment plate placed after removal has been scheled for position. However, in certain applications, mobile mandatory parts of the center line, it may cause parts or equipment damage. When parts vulnerability and may lead to a small vibration abandoned, or when their location is by machine spindle or specific to die, Tolerance again or when the request is a sophisticated, it would rather let the fixture to adapt to the location of parts, and not the contrary. For these tasks, Elyria, Ohio, the company has developed Zaytran a general non-functional data synchronization West category FLEXIBILITY fixture. Fixture because of the interaction and synchronization devices is independent, The synchronous device can use sophisticated equipment to replace the slip without affecting the fixture force. Fixture specification range from 0.2 inches itinerary, 5 pounds clamping force of the six-inch trip, 400-inch clamping force.
The characteristics of modern proction is becoming smaller and smaller quantities and proct specifications biggest changes. Therefore, in the final stages of proction, assembly of proction, quantity and proct design changes appear to be particularly vulnerable. This situation is forcing many companies to make greater efforts to rationalize the extensive reform and the previously mentioned case of assembly automation. Despite flexible fixture behind the rapid development of flexible transport and handling devices, such as backward in the development of instrial robots, it is still expected to increase the flexibility fixture. In fact the important fixture devices -- the proction of the devices to strengthen investment on the fixture so that more flexibility in economic support holders.
According to their flexibility and fixture can be divided into : special fixture, the fixture combinations, the standard fixture, high flexible fixture. Flexible fixture on different parts of their high adaptability and the few low-cost replacement for the characteristic.
Forms can transform the structure of the flexible fixture can be installed with the change of structure components (such as needle cheek plate, Multi-chip components and flake cheek plate), a non-standard work piece gripper or clamping elements (for example : commencement standard with a clamping fixture and mobile components fixture supporting documents), or with ceramic or hardening of the intermediary substances (such as : Mobile particle bed fixture and heat fixture tight fixture). To proction, the parts were secured fixture, the need to generate clamping function, its fixture with a few unrelated to the sexual submissive steps :
According to the processing was part of that foundation and working characteristics to determine the work piece fixture in the required position, then need to select some stability flat combination, These constitute a stable plane was fixed in the work piece fixture set position on the clamp-profile structure, all balanced and torque, it has also ensured that the work features close to the work piece. Finally, it must be calculated and adjusted, assembly or disassembly be standard fixture components required for the position, so that the work piece firmly by clamping fixture in China. In accordance with this procere, the outline fixture structure and equipped with the planning and recording process can be automated control.
Structural modeling task is to proce some stable flat combination, Thus, these plane of the work pieces clamping force and will fixture stability. According to usual practice, this task can be human-machine dialogue that is almost completely automated way to completion. A man-machine dialogue that is automated fixture structure modeling to determine the merits can be concted in an organized and planning fixture design, rece the amount of the design, shortening the study period and better distribution of work conditions. In short, can be successfully achieved significantly improve fixture efficiency and effectiveness.
Fully prepared to structure programs and the number of material circumstances, the completion of the first successful assembly can save up to 60% of the time.
Therefore fixture process modeling agencies is the purpose of the program have appropriate documents.
加工基础
作为产生形状的一种加工方法,机械加工是所有制造过程中最普遍使用的而且是最重要的方法。机械加工过程是一个产生形状的过程,在这过程中,驱动装置使工件上的一些材料以切屑的形式被去除。尽管在某些场合,工件无承受情况下,使用移动式装备来实现加工,但大多数的机械加工是通过既支承工件又支承刀具的装备来完成。
机械加工在知道过程中具备两方面。小批生产低费用。对于铸造、锻造和压力加工,每一个要生产的具体工件形状,即使是一个零件,几乎都要花费高额的加工费用。靠焊接来产生的结构形状,在很大程度上取决于有效的原材料的形式。一般来说,通过利用贵重设备而又无需特种加工条件下,几乎可以以任何种类原材料开始,借助机械加工把原材料加工成任意所需要的结构形状,只要外部尺寸足够大,那都是可能的。因此对于生产一个零件,甚至当零件结构及要生产的批量大小上按原来都适于用铸造、锻造或者压力加工来生产的,但通常宁可选择机械加工。
严密的精度和良好的表面光洁度,机械加工的第二方面用途是建立在高精度和可能的表面光洁度基础上。许多零件,如果用别的其他方法来生产属于大批量生产的话,那么在机械加工中则是属于低公差且又能满足要求的小批量生产了。另方面,许多零件靠较粗的生产加工工艺提高其一般表面形状,而仅仅是在需要高精度的且选择过的表面才进行机械加工。例如内螺纹,除了机械加工之外,几乎没有别的加工方法能进行加工。又如已锻工件上的小孔加工,也是被锻后紧接着进行机械加工才完成的。
基本的机械加工参数
切削中工件与刀具的基本关系是以以下四个要素来充分描述的:刀具的几何形状,切削速度,进给速度,和吃刀深度。
切削刀具必须用一种合适的材料来制造,它必须是强固、韧性好、坚硬而且耐磨的。刀具的几何形状——以刀尖平面和刀具角为特征——对于每一种切削工艺都必须是正确的。
切削速度是切削刃通过工件表面的速率,它是以每分钟英寸来表示。为了有效地加工,切削速度高低必须适应特定的工件——刀具配合。一般来说,工件材料越硬,速度越低。
进给速度是刀具切进工件的速度。若工件或刀具作旋转运动,进给量是以每转转过的英寸数目来度量的。当刀具或工件作往复运动时,进给量是以每一行程走过的英寸数度量的。一般来说,在其他条件相同时,进给量与切削速度成反比。
吃刀深度——以英寸计——是刀具进入工件的距离。它等于旋削中的切屑宽度或者等于线性切削中的切屑的厚度。粗加工比起精加工来,吃刀深度较深。
切削参数的改变对切削温度的影响
金属切削操作中,热是在主变形区和副变形区发生的。这结果导致复杂的温度分布遍及刀具、工件和切屑。图中显示了一组典型等温曲线,从中可以看出:像所能预料的那样,当工件材料在主变形区被切削时,沿着整个切屑的宽度上有着很大的温度梯度,而当在副变形区,切屑被切落时,切屑附近的前刀面上就有更高的温度。这导致了前刀面和切屑离切削刃很近的地方切削温度较高。
实质上由于在金属切削中所做的全部功能都被转化为热,那就可以预料:被切离金属的单位体积功率消耗曾家的这些因素就将使切削温度升高。这样刀具前角的增加而所有其他参数不变时,将使切离金属的单位体积所耗功率减小,因而切削温度也将降低。当考虑到未变形切屑厚度增加和切削速度,这情形就更是复杂。未变形切屑厚度的增加趋势必导致通过工件的热的总数上产生比例效应,刀具和切屑仍保持着固定的比例,而切削温度变化倾向于降低。然而切削速度的增加,传导到工件上的热的数量减少而这又增加主变形区中的切屑温升。进而副变形区势必更小,这将在该区内产生升温效应。其他切削参数的变化,实质上对于被切离的单位体积消耗上并没有什么影响,因此实际上对切削温度没有什么作用。因为事实已经表明:切削温度即使有小小的变化对刀具磨损率都将有实质意义的影响作用。这表明如何人从切削参数来确定切削温度那是很合适的。
为着测定高速钢刀具温度的最直接和最精确的方法是W&T法,这方法也就是可提供高速钢刀具温度分布的详细信息的方法。该项技术是建立在高速钢刀具截面金相显微测试基础上,目的是要建立显微结构变化与热变化规律图线关系式。当要加工广泛的工件材料时,Trent已经论述过测定高速钢刀具的切削温度及温度分布的方法。这项技术由于利用电子显微扫描技术已经进一步发展,目的是要研究将已回过火和各种马氏体结构的高速钢再回火引起的微观显微结构变化情况。这项技术亦用于研究高速钢单点车刀和麻花钻的温度分布。
刀具磨损
从已经被处理过的无数脆裂和刃口裂纹的刀具中可知,刀具磨损基本上有三种形式:后刀面磨损,前刀面磨损和V型凹口磨损。后刀面磨损既发生在主刀刃上也发生副刀刃上。关于主刀刃,因其担负切除大部金属切屑任务,这就导致增加切削力和提高切削温度,如果听任而不加以检查处理,那可能导致刀具和工件发生振动且使有效切削的条件可能不再存在。关于副刀刃,那是决定着工件的尺寸和表面光洁度的,后刀面磨损可能造成尺寸不合格的产品而且表面光洁度也差。在大多数实际切削条件下,由于主前刀面先于副前刀面磨损,磨损到达足够大时,刀具将实效,结果是制成不合格零件。
由于刀具表面上的应力分布不均匀,切屑和前刀面之间滑动接触区应力,在滑动接触区的起始处最大,而在接触区的尾部为零,这样磨蚀性磨损在这个区域发生了。这是因为在切削卡住区附近比刀刃附近发生更严重的磨损,而刀刃附近因切屑与前刀面失去接触而磨损较轻。这结果离切削刃一定距离处的前刀面上形成麻点凹坑,这些通常被认为是前刀面的磨损。通常情况下,这磨损横断面是圆弧形的。在许多情况中和对于实际的切削状况而言,前刀面磨损比起后刀面磨损要轻,因此后刀面磨损更普遍地作为刀具失效的尺度标志。然而因许多作者已经表示过的那样在增加切削速度情况下,前刀面上的温度比后刀面上的温度升得更快,而且又因任何形式的磨损率实质上是受到温度变化的重大影响。因此前刀面的磨损通常在高速切削时发生的。
⑷ 3.peaks这是一把日本产的尖嘴钳上的英文.谁翻译一下英文的意思.BBTJAPAN又是什么意思
3peaks指的是这款尖嘴钳具有三个尖峰,即三个不同用途的刃口。钳子头部的一个尖端用于签字或者整体握持,中间部分则用来剥去电线的外皮。而钳子背面的部分,正是您之前提到的,是由日本钢材制成的。
⑸ 求机械专业术语的解释及英文翻译
1)电化学腐蚀 electrochemical corrosion
电化学腐蚀就是金属和电解质组成两个电极,组成腐蚀原电池。
2)车架 automotive chassis
车架是跨接在汽车前后车桥上的框架式结构,俗称大梁,是汽车的基体。
3)悬架 suspension
悬架是汽车的车架(或承载式车身)与车桥(或车轮)之间的一切传力连接装置的总称,其作用是传递作用在车轮和车架之间的力和力扭,并且缓冲由不平路面传给车架或车身的冲击力,并减少由此引起的震动,以保证汽车能平顺地行驶。
4) 转向器 redirector
转向器的作用是把来自转向盘的转向力矩和转向角进行适当的变换(主要是减速增矩),再输出给转向拉杆机构,从而使汽车转向,所以转向器本质上就是减速传动装置。
5)变速器 speed changer
变速器是用来改变来自发动机的转速和转矩的机构,它能固定或分档改变输出轴和输入轴传动比,又称变速箱。
6)板料冲压 sheet metal parts
板料冲压是利用冲模,使板料产生分离或变形的加工方法。因多数情况下板料无须加热,故称冷冲压,又简称冷冲或冲压。
7)孔加工 spot facing machining
孔加工一般分为钻孔,铰孔,扩孔,镗孔,拉孔。 机床上对孔的加工可以用钻头、镗刀、扩孔钻头、铰刀、拉刀进行钻孔、镗孔、扩孔、铰孔和拉孔。
8) 刚度 rigidity
刚度是指材料或结构在受力时抵抗弹性变形的能力。是材料或结构弹性变形难易程度的表征。
9)标准件 standard component
标准件是指结构、尺寸、画法、标记等各个方面已经完全标准化,并由专业厂生产的常用的零(部)件,如螺纹件、键、销、滚动轴承等等。
10) 脆性材料 brittleness material
在外力作用下(如拉伸、 冲击等)仅产生很小的变形即破坏断裂的材料。脆性材料在外力作用下(如拉伸、 冲击等)仅产生很小的变形即破坏断裂的性质。
11)垫圈 washer
指垫在被连接件与螺母之间的零件。一般为扁平形的金属环,用来保护被连接件的表面不受螺母擦伤,分散螺母对被连接件的压力。
12) 塑性变形 plastic distortion
塑性变形是物质-包括流体及固体在一定的条件下,在外力的作用下产生形变,当施加的外力撤除或消失后该物体不能恢复原状的一种物理现象。
⑹ 样冲用英语怎么说
样冲_网络翻译
样冲
[词典] [机] anvil;
[例句]级进模自动排样冲切刃版口设计
Blanking Edge Design of Progressive Die Strip Layout System
进行权更多翻译