當前位置:首頁 » 作文翻譯 » 烷基化英語怎麼說及英文翻譯

烷基化英語怎麼說及英文翻譯

發布時間: 2024-11-01 08:52:23

㈠ fungicide的漢語翻譯是什麼

fungicide

葉鍾音

對真菌或細菌有殺死或抑製作用的化學物質。殺菌劑可以在植物體外或植物體內通過葯劑的毒力作用殺死或抑制病菌的生長和繁殖。有的殺菌劑對真菌無毒性,但可干擾真菌致病過程或影響病原物——寄主間的相互關系,提高植物防禦能力。

毒效基和輔助基

殺菌劑對病菌具有殺死或抑製作用,是與殺菌劑的分子結構有關。每個殺菌劑的分子結構中必須具有毒效基因或有毒元素。如有機汞化合物中的汞元素、克菌丹的三氯甲硫基。殺菌劑對菌類的毒力就是由於這些基團和元素破壞菌體代謝,最終使菌體死亡。殺菌劑結構中還有一定的輔助基,它可以調整化合物的物理化學性狀。如苯菌靈結構中的丁胺甲醯基團,具有較強的親脂性能,增加了葯劑向菌體內滲透的能力,從而增強了葯劑的抑菌作用。

無毒性殺菌劑

對真菌的活性表現在影響真菌的致病力;影響寄主—病原菌相互關系,提高植物抗病能力。三環唑對稻瘟菌的作用表現為抑制孢子萌芽過程中侵入栓細胞壁的黑色素合成,結果不能穿透寄主爛粗細胞造成侵入。即因為影響了侵入栓細胞壁的緊破性和胞內必要的膨壓。二氯二甲環丙羧酸(DDCC)噴灑水稻葉片上後,可以阻止稻瘟病病斑擴大,是由於葯劑促進了病斑周圍組織內植物保衛素momilictones A和B的積累,使侵入點內的菌絲不得擴展蔓延。

殺菌劑類型

根據殺菌劑對植物病害的防病搏前原理分為保護劑、治療劑、鏟除劑。根據殺菌劑的使基歷清用途徑分為種子處理劑、土壤處理劑、葉面噴灑劑。根據殺菌劑在植物體內的吸收和運轉性能分非內吸性殺菌劑和內吸性殺菌劑。根據殺菌劑有效成分的化學結構分銅素殺菌劑、硫素殺菌劑、有機硫殺菌劑、有機磷殺菌劑、有機胂殺菌劑、取代苯殺菌劑、醌類殺菌劑、雜環類殺菌劑等(見表1)。

殺菌劑的劑型

根據葯劑的理化性狀和使用的要求殺菌劑可以加工成多種劑型。

粉劑

直接將原葯加工成一定細度的粉末製成粉劑,也可以少量的原粉加填充粉混合磨碎成一定細度的粉劑。這類殺菌劑的原葯不親水,加工成粉劑後通過噴粉器械在地面植株間噴粉,或通過飛機在空中噴粉。粉粒的粗細影響噴葯和防治質量。粉粒細在植物表面附著力強,有效覆蓋面大,也易揮發為氣態。如硫磺粉一般要求能通過300號篩目,粉粒直徑不大於27微米。

可濕性劑

以原葯和濕潤劑、分散劑及填充粉混合粉碎而成。粉粒細度要求99.5%通過200目篩,即粉粒在74微米以下。兌水後必需具有懸浮性、分散性、濕潤性。殺菌劑劑型中可濕性劑占較大比例。

膠懸劑

以原葯、分散劑、懸浮劑、抗凍劑及水溶性表面活性劑混合後,在水中磨研製成。葯粒的直徑在1~3微米,兌水後其懸浮率在90%以上。如多菌靈膠懸劑。

乳油

原葯、有機溶劑、乳化劑按一定比例混合而成。有的為提高溶劑對原葯的溶解度,還加少量的助溶劑以達到配製高濃度乳油。乳油兌水後,呈透明或半透明膠體溶液,油粒直徑在0.1微米以下,稱可溶性乳油。還有一種乳油兌水後呈乳濁液,稱乳化性乳油。殺菌劑中亦有少量製成乳油如萎銹靈乳油。

銹病、白粉病、葉蟎ssulfursmokingagent煙劑硫白粉病、銹病、果樹瘡痂病、葉瞞ssulfurbentonite膨潤硫白粉病、銹病sSulphur硫磺硫素殺菌劑灌根:茄子黃萎病葉面噴灑:黃瓜細菌性角斑病二元酸銅瓜類霜霉病銅皂乳劑coppersoap種子處理:小麥腥黑穗病、小米黑穗病葉面噴灑:同波爾多液CuC12.3Cu(OH)2copperoxychloride王銅蘋果褐斑病、桃瘡痂病、褐腐病、細菌性穿孔病鋅銅石灰液zine-copperLimemixture土壤處理防治猝倒病、立枯病Cu(NH3)S04H20cuprammoniumsolu-tion銅氨合劑等大田作物、果樹、蔬菜、花卉的葉斑病、霜霉病、炭疽病[Cu(OH)2]3.CuS〇4等bordeauxmixture波爾多液配製波爾多液的原料CuS04?5H20cupricsulfate硫酸銅銅素殺菌劑應用范圍化學結構名稱(英文名)類型

表1 常見殺菌劑

表1 常見殺菌劑(續)-1

表1 常見殺菌劑(續)-2

表1 常見殺菌劑(續)-3

表1 常見殺菌劑(續)-4

表1 常見殺菌劑(續)-5

表1 常見殺菌劑(續)-6

表1 常見殺菌劑(續)-7

表1 常見殺菌劑(續)-8

表1 常見殺菌劑(續)-9

表1 常見殺菌劑(續)-10

表1 常見殺菌劑(續)-11

表1 常見殺菌劑(續)-12

表1 常見殺菌劑(續)-13

表1 常見殺菌劑(續)-14

表1 常見殺菌劑(續)-15粒劑

以原葯、粘合劑和載體通過特殊的造粒機械和工藝加工而成,根據粒的大小分微粒劑、顆粒劑和大粒劑。防治稻瘟病的異稻瘟凈顆粒劑撒施稻田後,既可降低空氣中農葯污染,又可通過田間灌溉水中葯劑的緩解,被稻株吸收運轉,達到防治病害的目的。

煙劑

原葯、燃料、氧化劑、消燃劑混合製成的粉劑,分裝在罐內或袋內,通過引火線點燃後燃燒。其中的原葯因受熱氣化後,在空氣中又冷凝為0.1~2微米的煙粒。百菌清、硫黃具有高溫下不分解並能升華,因此製成煙劑,用於溫室和林間。

殺菌劑的毒性

殺菌劑對人、畜、鳥、蜂、魚的毒性。分急性毒性、亞急性毒性、慢性毒性三種表現形式。

急性毒性

以小動物如小白鼠或大白鼠作供試動物,以殺菌劑直介面服或皮膚塗抹於供試動物,觀其中毒症狀和致死中量,即殺死群體中50%個體所需的劑量(毫克/公斤體重)以LD50表示。凡LD50值大者,表示殺死50%個體所需的劑量多,該殺菌劑的毒性低。根據口服LD50量的大小,將農葯的毒性劃分為特劇毒<1毫克/公斤、劇毒1~50毫克/公斤、高毒50~100毫克/公斤、中等毒100~500毫克/公斤、低毒500~5000毫克/公斤、微毒5000~15000毫克/公斤。經皮毒性分低經皮毒性、中等經皮毒性、嚴重皮膚毒性。幾種常用殺菌劑的毒性(表2)。

表3 幾種殺菌劑合理使用准則

慢性毒性

用微量殺菌劑長期(六個月以上)飼喂供試動物連續觀察2至4世代存活的個體,是否發生致癌、致畸、致突變的現象。為了快速測定,也可用Ames氏測定法,即以鼠傷害沙門氏菌(Salmonella tynhimurium)作為指示微生物,三天內即可知該葯劑是否具致突變作用。有的殺菌劑在急性毒性方面屬於微毒,但其慢性毒性卻表現具「三致」作用,如百菌清在5000~10000mg/kg對大鼠腎臟有致癌作用,在微生物試驗中亦發現有致突變現象。

由於殺菌劑對動物的毒性,加之使用於農作物上後,由於葯劑的分解、代謝的原因,造成空氣、水、土壤等環境的污染和農產品上的殘留。國家從保持生態平衡,防止環境污染以及人、畜的健康安全出發,對一些高毒和高殘留的殺菌劑禁止使用,如有機汞殺菌劑。同時也規定一些殺菌劑的最終殘留的限量、安全間隔期(表3)。如百菌清在水稻最終殘留量不能超過0.2 ppm,安全間隔期為10天。蘋果、梨、葡萄不能超過1 m g/kg,安全間隔期分別為21天、25天、21天。

殺菌劑葯效測定

effectiveness test of fun-gicides

周明國

評估農葯防治病害的效果及其應用價值的試驗方法。葯效測定的內容包括葯劑防治的對象、對病原物的毒力、防治原理、施葯技術、殘效期、農葯理化性能及其加工劑型與葯效的關系。以防病效應評估各種葯劑的差異和實用價值。此外,可測定對植物的葯害和對非靶標生物群落的副作用。葯效測定首先採用室內快速簡便方法篩選出有希望的葯劑再進行溫室盆栽植株測定,最後在不同生態環境條件下進行大田葯效測定。以對病原物產生50%效應的有效濃度(EC50)或產生100%效應的最低抑制濃度(MIC)值與對照標准葯劑產生相同效應的濃度之比,評價測定葯劑效力和推廣價值。

室內葯效測定

又稱毒力測定,對病菌或培養基質施以葯劑,以孢子萌發率、菌體生長速率、菌體形態或呼吸作用等生理變化作為衡量葯劑毒力的指標。根據葯劑和供試病菌的特性,室內葯效測定方法如下。

孢子萌發法

將葯劑附著在載玻片或其它適當平面上,然後滴上病菌孢子懸浮液,或使葯液直接與孢子液混合,適當培養後鏡檢孢子萌發率。葯劑濃度對數與抑制孢子萌發機率值之間的函數關系,以劑量反應曲線(簡稱D-R曲線)表示,並可根據D-R曲線位置和斜率評估和比較葯劑毒力。

生長速率測定法

在含有葯劑系列濃度的固體培養基平板上或液體培養基中,定量接種,經適當培養後,測量和比較菌落擴展速度、或渾濁度或菌體乾重增加速率。有的可通過測量菌體分泌、代謝物含量推測對菌體生長速率的抑制效力。適用於近代開發的許多對孢子萌發無抑製作用,但可干擾菌體生物合成或細胞分裂過程的葯劑的葯效測定。

附著法

細菌或真菌孢子附著在滅菌的種子、菌絲、果皮或其它保護材料上,直接接觸葯劑,並給予適當溫度、養分和水分,一定時間後觀察有無菌落形成。

氣體效力測定法

有些殺菌劑能夠揮發或分解產生具有抗菌效力的氣體。測定氣體抗菌效力是在固定的培養基上接種供試菌,將皿倒置,在倒置皿蓋內放入葯劑,檢查經培養的病菌生長發育狀況。

擴散法

又稱抑菌圈法,在已接菌的固體培養基平板上,加入少量抗菌物質,使葯劑接觸培養基和病原菌,適當培養後施加葯劑部分的培養基周圍由於葯劑擴散產生抑菌圈或抑菌帶,抑菌圈的大小與葯劑濃度呈函數關系。應用此法比較殺菌劑毒力大小或病原菌對葯劑的敏感性時,還應注意抑菌圈大小受不同葯劑在培養基中水平擴展能力的影響。擴散法常用於農用抗菌素和混配葯劑的葯效測定。

形態觀察法

有些殺菌劑對孢子萌發和菌體生長速率幾乎沒有抑製作用,但影響菌體正常形態,阻止病菌侵染發病。如水稻紋枯病菌接觸井崗黴素後,菌體新分枝細胞縮短、分枝角度增大。多菌靈處理真菌孢子後,孢子能正常萌發,但芽管不能形成隔膜,三唑酮可使菌絲頂端腫漲畸形。

室內活體測定法

對新發展的少數只在寄主活體上才表現抗菌活性的葯劑和對專性寄生菌的葯效測定,可用葯劑處理果實或部分植株組織如葉段、葉碟,經培養後以早期菌落擴展速率或寄主發病程度、或病菌在寄主上的繁殖率評估葯劑效力。

溫室葯效測定

經室內試驗證明葯效較好的葯劑,必須直接在植株上進行試驗,測定葯劑與寄主相互作用下的防病效果。溫室試驗一般在幼苗上試驗,不受季節限制,通過適當儀器將葯劑定量均勻噴施到盆栽植物上並定量人工接種,模擬發病的最適條件確保對照植株發病,使在較短時間內能得到重復性穩定的試驗結果。試驗內容和要求與大田葯效試驗類似。

大田葯效試驗

對多種農葯新品種或當地未曾使用過的農葯葯效比較試驗,以及同一葯劑中不同加工劑型,施葯方法、施葯劑量、施葯濃度、施葯時間和次數的比較試驗等。各試驗中應注意作物對葯劑的反應,如葯害或促進作物生長發育等。田間試驗步驟可分為小區、大區和大面積示範試驗,取得經驗後進行推廣使用。小區試驗面積大小可根據土地條件、作物種類、病害特徵和試驗要求而定,一般不小於20平方米,成年果樹不少於3棵,設3~4次重復和保護行。大區試驗面積一般在0.5~2畝,不設重復或重復1次。大面積示範試驗是在葯劑經小區和大區試驗並肯定了葯效和經濟效益的基礎上進一步在不同生態區域進行試驗,以肯定其推廣價值。

大田葯效試驗方法隨葯劑特性、防治對象和試驗目的而異。常見的施葯方法有噴施、種苗處理、土壤處理、果實處理和煙熏等。混配製劑的葯效試驗中,除設對照標准葯劑處理外,還應包括混配製劑中各成份的單劑處理,根據防治效果評估葯劑復配後的聯合作用模型。病菌侵染後施葯或根部施葯防治地上部分的氣傳病害,可測定葯劑內吸治療效力、分析葯劑在植物體內的輸導方式和重新分配。

殘效期測定

殺菌劑殘效期受葯劑理化性能、寄主和病原物代謝降解或環境溫度、光照、雨水沖刷等因素的影響。殘效期測定常採用生物測定的方法,也可採用化學和儀器分析的方法。如比較施葯後不同天數接種對病害的防效,可用擴散法直接測定寄主體液的抗菌能力。施葯後間隔取樣萃取葯劑有效成分,可通過氣相、高效液相色譜或紫外光譜等方法定性定量分析,直接測定葯劑的有效殘留量。如經乙酸乙酯萃取作物體內的多菌靈有效成分,可用色譜和紫外光譜分析殘留含量。分析環境單因子對葯劑殘效期的影響可在室內進行模擬試驗,通過上述方法測定。

殺菌劑作用原理

principles of fungicidal action

葉鍾音

殺死或抑制菌體生長、發育、繁殖的生理生化過程。殺菌劑接觸菌類後表現為影響孢子萌芽、芽管隔膜形成、附著孢的成熟、侵入絲的形成、芽管菌絲異常、扭曲、膨大畸形、菌絲頂端異常分枝、新孢子形成以及菌核形成和萌芽等各種中毒症狀。殺菌劑對菌體的作用方式有殺菌作用和抑菌作用。殺菌是一種殺菌劑在一定濃度、時間下接觸菌體使其失去生長繁殖能力。抑菌是受葯劑處理後,菌體的生長繁殖受到抑制,一旦脫離接觸或加入抗代謝作用的競爭性抑制劑,菌體又可恢復生長繁殖。隨著殺菌劑對菌生理代謝及生物化學反應的深入研究,殺菌和抑菌的概念賦予新的內涵。影響菌體內生物氧化,在菌類中毒症狀上表現為孢子不能萌芽稱為殺菌。影響菌體生物合成,在菌類中毒症狀上表現為萌芽後的芽管或菌絲不能繼續生長稱為抑菌。有時殺菌或抑菌並不能截然分清,如5ppm苯菌靈可抑制一些白粉病菌菌絲生長,當500ppm濃度時即影響孢子萌芽;萎銹靈對菌體的作用方式是抑制生物氧化,但中毒表現為影響菌絲繼續生長。殺菌劑對菌體的殺菌或抑製作用表現在以下三個方面。

破壞菌體細胞結構

細菌和真菌的細胞壁組成不同,殺菌劑的作用方式也不同。細菌細胞壁中主要成分為胞壁質粘肽,由N-乙醯氨基葡糖(GlcNAc)和N-乙醯壁氨酸(MurNAc)交叉結合成長鏈,氨基酸附著於多糖的直鏈上構成網狀結構。細胞壁形成過程中必須通過糖肽多糖轉肽酶和D-丙氨酸羧肽酶的催化交聯反應。青黴素的結構與D-丙氨醯-D丙氨酸的結構相似,當青黴素與對青黴素敏感的細菌接觸時,青黴素的β-內酯環的C-N鍵開裂,開鍵的C原子與轉肽酶結合,抑制了轉肽酶,阻止細胞壁的合成。結果使細菌變成沒有細胞壁的裸露原生質,改變細胞膜的通透性,細胞膜破裂而細菌死亡。

真菌細胞壁的組成隨不同類群而有所不同。幾丁質是接合菌、子囊菌、半知菌、擔子菌等類群真菌細胞壁中的重要組成成分。由N-乙醯氨基葡萄糖通過β-1,4糖苷鍵結合成的含N多聚糖。多氧黴素、稻瘟凈、稻瘟靈等殺菌劑都能抑制細胞壁的形成,但它們的作用方式不一。多氧黴素D與幾丁質前體結構相似,且對幾丁質合成酶的親和力大於幾丁質前體與合成酶親和力,幾丁質合成酶一旦與多氧黴素D結合,即失去聚合幾丁質的能力。而稻瘟凈的作用是阻止幾丁質前體透過細胞膜使合成酶得不到幾丁質前體,起隔離作用。稻瘟靈的作用則在影響幾丁質以外的其它細胞壁成分(脂肪酸、油酯、磷脂等)的合成。真菌細胞壁的形成受阻後,表現的外部症狀為孢子萌芽芽管粗糙,末端膨大或扭曲畸形,菌絲頂端膨大扭曲畸形等。殺菌劑除阻礙菌體細胞壁形成外,還可溶解和破壞細胞壁組成的部分物質和抑制細胞壁上的一些酶的活性以及對細胞壁的另一個組成纖維素結構的破壞。

菌體細胞膜是雙層分子結構,由類脂質、蛋白質、甾醇和鹽類。通過金屬橋和疏水鍵連結組成,具有親脂和親水雙親媒性分子性質。甾醇,特別是麥角甾醇對真菌(除卵菌外)細胞膜的結構和功能關系重大。麥角甾醇合成受阻會導致膜結構的變化。麥角甾醇的生物合成部位在細胞內質網的平滑部分,從異戊間二烯經過縮合生成角鯊烯(Sgualene),經環化後生成羊毛甾醇,再由羊毛甾醇經過去甲基化和雙鍵易位等多種反應最後生成麥角甾醇。其脫甲基化是通過多功能氧化酶(細胞色素P450)催化進行的。三唑類殺菌劑的作用就是抑制多功能氧化酶的活性從而使C14的脫甲基反應難以進行,使14-2-甲基甾醇積累。咪唑、哌嗪、吡啶、嘧啶等類的殺菌劑亦有相同的作用。而嗎啉類殺菌劑則不同,它的作用點是抑制△8~△7的雙鍵異構化及C22雙鍵導入C24雙鍵還原,最終也導致膜的結構受損。外表症狀表現為細胞內陷、液泡化,菌絲生長畸形,末端膨脹、扭曲,分枝過多等。

卵磷脂是菌絲細胞膜的另一重要組成成分,異稻瘟凈、克瘟散等有機磷殺菌劑通過抑制卵磷脂合成過程中的N-甲基轉移酶活性,從而抑制卵磷脂合成,導致菌絲生長受阻。多果定結構上的長碳鏈可以使細胞膜上的脂質部分溶解,二硫代氨基甲酸酯類殺菌劑可以與細胞膜上的金屬橋形成絡合物,銅、汞金屬鹽作用於膜上的蛋白質或含—SH基酶類,這些作用都能導致菌體細胞膜結構的破壞、改變膜的透性而致菌體死亡。

干擾菌體細胞代謝

菌體萌芽時所需的能量來源於貯存的糖類和脂類,從一個葡萄糖分子經過糖酵解、三羧酸循環、末端氧化等一系列過程,最終產生ATP,供應菌體生長發育的需要,這一系列的生物氧化過程的各個環節都有專一性的酶參與,一旦這些酶受到殺菌劑的作用,整個代謝反應即會停止,能量供應也停止。菌體因得不到能量而死亡。大多數的保護性殺菌劑如二硫代氨基甲酸鹽、克菌丹、百菌清及銅、汞、硫的無機殺菌劑等都可以抑製糖酵解和三羧酸循環過程中的多種酶的活性。至於末端氧化過程中的氧化磷酸化呼吸鏈,萎銹靈、敵克松、苯酚類以及砷、銅、汞劑都可以抑制該過程中酶的活性,只是不同的殺菌劑有它特有的作用點。

脂類的代謝亦是能量供應的重要來源。克菌丹、二硫代氨基甲酸鹽、醌類殺菌劑抑制β-氧化,阻礙脂肪酸的降解。二甲醯亞胺類殺菌劑通過抑制三磷酸甘油酯的合成而干擾脂的生物合成,克瘟散還能抑製糖脂的合成。

對核酸、蛋白質合成的影響

核酸是由鹼基、戊糖、磷酸組成,一些殺菌劑可以直接作用於鹼基,如甲菌定、乙菌定、磺醯胺類、二甲醯亞胺類、苯並咪唑類殺菌劑。單核苷酸通過核酸聚合酶的作用形成多核苷酸。放線菌素D等抗菌素能抑制核酸的聚合作用。對蛋白質的合成影響主要表現在抑制氨基酸活化、轉氨基作用、aa-tRNA形成、DNA模板功能、肽鍵伸長、氨醯基-tRNA、mRNA和核蛋白體三者結合等過程。起抑製作用的主要是抗菌素類如鏈黴素、四環素、放線菌酮、稻瘟散、春雷黴素等,也有如氯硝胺、甲菌定一類有機殺菌劑。另外,蛋白質合成過程中某些酶的活性受到抑制或能量供應受阻都影響蛋白質合成。菌體細胞核酸、蛋白質合成受影響必然要反映到細胞核的形成,氯硝胺致使細胞不正常分裂增加,苯並咪唑類干擾微管蛋白聚合,致使紡錘體纖維形成受阻,有絲分裂受破壞,染色體不能向兩極移動,子細胞不能正常形成。其它如二甲醯亞胺類、芳烴類殺菌劑都會引起菌體細胞有絲分裂不穩定,增加二倍體有絲分裂重組次數。

殺菌劑對菌體細胞代謝活動,有的僅在某個特定的位點的單一作用,如三唑酮對甾醇的合成、多菌靈對微管蛋白的親合。也有不少殺菌劑,尤其是保護性殺菌劑是多位點的抑制,如克菌丹能抑制丙酮酸的脫羧反應,從而影響乙醯輔酶A的形成;同樣脂肪酸氧化過程中也需要乙醯輔酶A參與,克菌丹亦能抑制脂肪酸氧化。

殺線蟲劑

nematocide

葉鍾音用於土壤或植物以殺死植物寄生線蟲或減少線蟲的蟲口數,從而保護植物不受線蟲為害的化學葯劑。植物線蟲病害的化學防治最早可追溯到19世紀以二硫化碳等化學葯物用於土壤,試圖抑制根瘤線蟲,但未能獲得滿意的結果。1943年凱特(Cater)發現D-D混劑是現代殺線蟲劑的開端,隨後二溴乙烯等不飽和鹵代烴等殺線蟲劑陸續被開發。1956年除線磷(dichlofenthian)作為第一個有機磷土壤殺線蟲劑出現。

作用機理

殺線蟲劑的作用機理與殺蟲劑相同。鹵代烴具有強的脂溶性,容易滲透線蟲體壁和卵殼,通過烷基化或氧化反應破壞蟲體呼吸作用,導致線蟲麻痹癱瘓而死。有機硫殺線蟲劑威百畝、棉隆在土壤中通過分解產生異硫氰酸酯、甲基胺、甲醛、硫化氫等,其中異硫氰酸酯(—N—C=S)是一種很強的生物毒性基團,可以使線蟲體細胞中含—SH和—NH2的酶失去活性,從而使線蟲致死。有機磷殺線蟲劑對線蟲膽鹼酯酶具抑製作用,使神經傳遞受阻而導致線蟲死亡。氨基甲酸酯類的梯滅威進入植物體內後,在酶的作用下形成亞碸和碸的代謝產物,它們都是膽鹼酯酶抑制劑。其中碸的代謝物對線蟲的活性高於亞碸的化合物。

應用

具有熏蒸作用的殺線蟲劑,因對植物具毒害,只能在種植前使用,以專門的器具注入土壤,全面施用(苗床)或溝施、穴施。為促使其揮發和在土壤中的擴散,最適宜的土壤溫度為21~27℃,土壤濕度5%~25%。用葯與播種(種植)的間隙期視季節而定,一般15~20天。觸殺性的殺線蟲劑可以在種植前、種植時進行土壤處理,丙線磷、克線磷可用於浸根、浸鱗莖。殺線威、克線磷可作葉面噴灑。

毒性

具熏蒸作用的鹵代烴、有機硫等殺線蟲劑對人畜毒性低,而有機磷和氨基甲酸酯類殺線蟲劑對人畜毒性大,如梯滅威的原葯對大鼠口服致死中量為0.93毫克/公斤,屬於劇毒。呋喃丹的口服毒性大而經皮毒性低。這類殺線蟲劑有的在土壤中能維持較長的殘效,如克線磷葯效維持達幾個月,梯滅威在土壤中也不易分解,連續多年使用影響地下水的質量。另外早期使用的二溴氯丙烷對試驗動物有致癌和致突變作用,在工廠生產中可引起男性不育。

種類

殺線蟲劑的品種約30餘種,常用的僅10餘種(見表),其中具熏蒸作用的土壤殺線蟲劑用量已日趨減少,而代之以觸殺性和具內吸作用的殺線蟲劑。

植時土壤處理內吸異丙三唑磷植時土壤處理觸殺性甲基異柳磷植時、生長期土壤處理、浸鱗莖、根觸殺性丙線磷植後、植時、生長期土壤處理、浸根、葉面噴灑內吸克線磷有機磷

㈡ 化工英語文獻翻譯

希望不要讓我3.5個小時的努力付之東流!

篇名:液-固提升管的計算機層析攝影和微粒示蹤研究
作者:Shantanu Roy, Jinwen Chen, Sailesh B. Kumar, M. H. Al-Dahhan,* 和M. P. Dukovic [* 表示通訊作者的意思]。
單位:密蘇里州聖路易斯市華盛頓洲立大學化學工程系化學反應工程實驗室(63130)
摘要:液-固循環流化床在各種工業過程中均是一種有潛在價值的反應裝置,如煉油和精細化學品、石化產品及食品的合成。這些過程中,迅速失活的固體催化劑需要在基本反應完成後再生,並在提升管的固體中再循環。本研究表明,計算機輔助放射微粒示蹤技術(CARPT)可用於構建提升管中固體流速模型和供試流體流速下的固體迴流。?-射線計算機層析攝影(CT) 表明,在分餾柱中部固體濃度稍高。這和氣-固提升管反應器的情景相反,後者的固體濃度在柱壁上更高。

前言
液-固循環流化床在精細化學品、石化產品合成及煉油等各種工業過程中作為一種備選反應裝置迅速得到推廣(Liang等, 1995)。該過程在液相反應物(典型高壓、低溫下的烴)(Thomas, 1970)和可快速滅活的固相催化劑(Corma和Martinez, 1993)存在的反應器中完成。基本反應在高液/固流速比的垂直提升管柱中完成(在提升管中固體變成可被液體運載的液化狀態)。失活催化劑在通過連續內環流中的循環固體和基本反應偶聯的獨立處理過程中再生。此類連續流動的液固系統的設計和組裝需要每相中的流動模型以及相含率分配方面的知識。本工作的目的是通過實驗研究實驗室級循環液固系統流動模型的提升管中固相的流速和含率分布問題。

實驗
實驗室級液-固循環流化床的裝備圖紙如圖1所示。提升管是一根直徑6英寸、高7英尺的有機玻璃柱。提升管中的自來水帶動直徑2.5毫米的玻璃微珠流動,並通過柱塞和噴射器迴流進入系統。用噴射器(已把固體流速預標定為水流速函數)控制液流法來維持提升管中的固體物料流。全部固/液流速比可通過柱底部分配盤來調控。用內環流中的泵和儲水罐中的循環水來維持氣餾柱和噴射口部分恆定的高速水流。實驗在密蘇里州聖路易斯市華盛頓洲立大學化學工程系化學反應工程實驗室研發的CARPT和CT裝置中進行(Devanathan, 1991; Kumar,1994)。也許有必要指出,本研究使用的系統是緻密的,粘滯性小,惟有非浸入式流體檢測法如CARPT和CT才有能力精確測量固體流速和濃度。當前的裝備使得提升管可以在CARPT-CT操作平台上安裝用於本研究。早在固相水動力學的研究之前, 液相停留時間分布測定儀就在液相中得到應用。脈沖式快速注入氯化鉀溶液後測定液相在既定位置的傳導情況。本研究的結果其他地方也有報道(Roy 等, 1996),我們發現液相實際上呈集中流勢,具有小的分散效應。液體示蹤顆粒E-曲線的二維方差總是小於0.1。

美國化學學會的CARPT研究(Devanathan, 1991; Yang等, 1992)把放射性Sc-46微粒(發射波長350 íCi,半衰期83天)引入一個粒徑和密度與待混流的玻璃微珠相匹配的中空鋁球中來制備示蹤顆粒。採用精妙的CARPT標定步驟(Yang等, 1992), 顆粒被放入供試反應段的約200-300個已知位置,就得到了每個檢測器的距離-密度關系標定圖譜。標定完成後,設置並保持所需的液體超臨界流速,且容許固體微粒自由進入流場來模擬典型的玻璃微粒的運動。長時間後(8小時),示蹤顆粒的位置(用檢測器獲得的光子數目來表示)記作時間的函數。隨後,固體顆粒的平均流體組分和波動流體組分、粘滯系數和動力學能量可以通過舍棄和處理粗略的原始數據後計算得出(Devanathan, 1991; Larachi 等, 1997)。這是CARPT技術首次在一個體系中的成功演示,該體系中示蹤顆粒周期性地離開和重新進入被檢測器檢測到的分餾柱反應段。
密蘇里州聖路易斯市華盛頓洲立大學化學工程系化學反應工程實驗室的CT掃描儀採用扇-線幾何學來測定?-射線通過提升管中給定物體後的放射衰減。然後用粗略的衰減測量儀器重構中橫截面上各相的時間平均含率分布。該放射源被置於100 mCi的Cs-137同位素中, 11個碘化鈉檢測器(最大值)組成的角陣列用於衰減測試。基於極大似然原理的期望極大演算法(Lange和Carson, 1984)用來做投影儀中獲取的圖象重建。CREL掃描儀的軟體和硬體方面的細節問題已經由 Kumar 等 (1995)、Kumar和Dukovic′(1997)討論過。本研究中供試液-固提升管在沿柱的四個軸向位置被掃描。

結果與討論
實驗在液體超臨界流速(12-23 cm/s)的范圍內進行。本研究報道了在20 cm/s液體超臨界流速的條件下運行的系統中得到的典型結果。所有實驗採用直徑2.5毫米的玻璃微珠,噴射器的水流速度為25 gal/min。提升管底部的水流速度保持在33 gal/min,以便使柱中的平均液體超臨界流速達到20 cm/s。

圖2 是在20 cm/s的液體超臨界流速下4個軸向位置測得的對數平均化和時間平均化的徑向固體含率 (固體濃度) 分布圖。我們觀察到固體含率的級數並不隨著徑向位置的升高而呈顯著變化(最大變異是4%),但隨軸向位置的變化而稍微下降(最大變異4%)。和柱壁比較而言,任何既定軸向位置的固體含率稍高於柱中部。這是一個有趣的結果,因為在氣-固提升管中廣泛報道的是相反趨勢(Rhodes和Geldart, 1989; Rhodes, 1990)。這里報道的固體含率分布的徑向梯度也更小。

圖3表示CARPT實驗中估計的固體流速場。圖3a是流速矢量圖, 該圖清楚地表明,從時間平均化的角度來考慮,固相有一個內循環迴路:固體在柱心上升並在柱壁上下降。圖3b表示柱中部四個位置的固體流速的時間平均化軸向成分也有相同的定量結果。有必要指出,柱壁上固體的下游流速和上游流體相比較有較小的數量級, 下游總的固體質量仍然是令人滿意的(本實驗為9.6%)。柱的33cm高度處固體含率圖一般來說是有序的。這個高度恰好位於柱中分配器和噴射器的上方(圖1),是混合區域的一部分, 顯然比78 cm高度處有較低的固體含率。這也為CARPT的實驗結果所證實:圖3a 清楚地表明固體流速矢量的方向在該高度上是隨機取向的, 而柱中較高的位置則出現清晰的循環迴路。因此,柱中33cm高度處的流體仍待斟酌,並且和柱的其他部分相比呈現明顯的偏離行為。用一種新穎的方法, 提升管中固體殘留時間分布(RTD)可間接從CARPT數據計算得出。由於示蹤顆粒被認為是可重復循環進入提升管的典型分散系組分,其每次通過提升管在其中停滯的時間的分布是其RTD值。這些不間斷採集數據獲得的「殘留時間」被作成圖4中的柱狀圖。提一個武斷的假說,這就給出了固相的RTD值。最後,在圖5中, 固體沿軸向的平均軸向流速被表示為液體超臨界流速的函數。不同條件下實驗表明,柱中線以及柱壁(下游)的流速整體上都是增加的。當然,這也可能是由於通過相同區段的液相模量較高引起固相模量的增加導致了固體平均流速提高。純粹基於這些實驗,結果似乎表明隨著液體超臨界流速的加大固相流速有一種趨於「飽和值」的傾向。然而,這些結果仍期待著未來進一步的實驗來做強有力的驗證。

結論
直至今日,流化床和提升管的設計仍停滯在經驗法則的水平上。此類系統中的實際現象遠比作為設計程式基礎的啟發式近似演算法獲得的結果要復雜的多。因此,液-固提升管的使用者和設計者可以從此類系統中的水動力學基本認識中獲得極大的啟發。當前的研究只是向同類實驗定量方面邁出了一小步。在CREL(作者的實驗室), 各種操作條件和使用不同粒徑的顆粒的提升管配置研究工作正在進展中。此類體系中的靜止現象研究也在未來的計劃中。數據將做進一步的處理來計算固相的動力學能量、粘流剪切應力以及粘流分散系數。本研究努力的整體目標是了解影響液-固提升管效能的一些關鍵變數,進而研究更基礎的按比例增大規律。我們期望我們的實驗數據能作為液-固提升管流體的計算機動態建模的基準。

圖表題目翻譯如下:
圖1. 液-固提升管的裝備圖紙
圖2. 20 cm/s液體超臨界流速下不同軸向位置的固體含率(濃度)分布
圖3. 20 cm/s液體超臨界流速下的固體流速場: (a) 流速矢量圖; (b) 軸向平均流速圖。

致謝(略)
參考文獻(略)

㈢ 烷基化的英語翻譯 烷基化用英語怎麼說

英語叫
Alkylation。。。
alkylation 英 [ˌælkɪ'leɪʃən] 美 [ˌælkɪ'leɪʃən]
n. 烷化,烴化;
[例句]These derivatives are readily obtained by alkylation of2-mercaptopyridine and alkyl halides under alkaline conditions.
這些衍生物可以容易地在鹼性條件下通過2-巰基吡啶和鹵代烷的烷基化而得到。

㈣ 求化學專業英語在線翻譯,急用,謝謝

This paper is a synthetic pyridine hydrochloric acid chloride aluminum acid salt ionic liquids (PyHCl - xAlCl3) HCL modification of chlorine aluminates salt ionic liquids, using infrared and ultraviolet absorption of pyridine characterized the acidic, and has been used in catalytic 2 - methyl naphthalene (2 - MN) and rene transfer alkyl dissatisfied utilization two methyl naphthalene (utilization DMN) reaction.

With chlorine aluminum acid salt and hydrogen chloride aluminum acid salt modification of ionic liquids as catalyst, inspected the ionic liquid acid, 2 - methyl naphthalene and 1 - methyl naphthalene different ratio, the modification of ionic liquids such factors HCl in 2 - MN through transfer alkylated reaction synthesis utilization, the influence of two methyl naphthalene to optimize the reaction conditions. Under the optimum reaction conditions (for 35 ℃, reaction temperature, reaction time for 2h 2 - MN and rene mole ratio of 1:1), after the modification of HCl in ionic liquids PyHCl - after AlCl3 - e to accelerate the selectively HCl in generating utilization of DMN reaction speed, reaction 2h, utilization of the selectivity is 100% DMN circumstance, 2 - MN conversion of 15.8 percent.

㈤ 化工英語文獻翻譯(新)

你的文獻篇幅浩瀚,網路只允許上傳這么長,餘下部分到我的貼吧去拷貝吧!明天見!

利用超聲技術改性的氨基多孔硅合成丙二醇甲醚
摘要
在溫和條件下採用超聲技術合成了氨基改性多孔硅。用BET、29Si核磁共振譜、元素分析和指示劑染料吸附等方法表徵的樣品在用甲醇和環氧丙烷合成丙二醇甲醚的反應中呈現出令人鼓舞的催化特性。 它們在反應中有高的產率和循環使用性,表明超聲技術在有機改性硅催化劑的制備方面是有效的。而且我們還推測了用此類催化劑合成丙二醇甲醚的可能的反應機理。
關鍵詞:改性多孔硅; 超聲技術;環氧丙烷;甲醇;丙二醇甲醚。
前言
對均相催化劑的異質化的努力來代替傳統試劑和催化劑已經成為一個興趣越來越濃厚的研究領域。大量的工作集中在有機改性的固體鹼的制備方面來異質化均相氨基催化劑。改性的過程一般是振盪、加熱、迴流等[1–3]。 最近,聲化學合成反應的興趣有所增加[4]。超聲技術因其優點例如高精度和快度已被廣泛用於兩相反應體系中。多數此類反應涉及非均相化學反應[5]。 然而在多孔材料的有機功能化領域,超聲技術僅得到有限的應用 [6,7]。當前工作中,我們用超聲能開發了一個合成氨基改性硅的替代合成路線,超聲能可以產生空化現象從而對固體進行化學改性[8]。帶有『『單一鹼基位點』』的氨基改性硅是各種反應中令人鼓舞的催化劑[9]。利用鹼性催化劑合成丙二醇醚類是重要的有機合成反應。 已經有過幾個關於丙二醇甲醚合成方法的報道[10,11]。其中環氧丙烷法最方便、最適合工業應用。一般來說,環氧丙烷通過酸性或鹼性催化劑和脂肪醇反應。這個過程中使用的催化劑包括早期的均相酸催化劑或均相鹼催化劑(氫氧化鈉、乙醇鈉和三氟化硼)以及後來的固體酸催化劑和鹼催化劑。 然而,很少有報道氨基改性硅用作丙二醇甲醚合成的催化劑,盡管有機固體鹼性催化劑 在該反應中表現出良好的活性。氨基官能團接枝到多孔支持體上會形成帶有單一鹼性位點的催化劑,可以加速這類反應。當前的工作中,氨基官能團化的硅催化劑,包括NH2/SiO2、NH(CH2)2NH2/SiO2、TAPM/SiO2(化合物翻譯略)和TBD/SiO2(化合物翻譯略),用APTMS、EDPTMS和CPTMS作為偶聯劑在溫和的實驗條件下用超聲技術制備。同時,為了證實超聲技術的優點,我們也用傳統方法制備了NH2/SiO2,以便理解超聲技術在官能團改性的多孔硅的制備中的有效性。此外,有機固體鹼催化劑的催化活性用甲醇+環氧丙烷=丙二醇甲醚這樣的合成反應來估計。並且,我們還推測了在此類催化劑上合成丙二醇甲醚可能的反應機理。
2. 實驗
2.1. 催化材料的合成
氨基化硅催化劑可用以前報道的在相似的條件下用兩種方法獲得 [7]。氨基丙基硅官能團化的SiO2用下述方法制備:10.0 g 二氧化硅在473 K下真空預熱12 h除去除表面OH-官能團之外的所有吸附的水分,然後在真空下冷卻到室溫並轉移到250 mL圓底燒瓶中。和40.0 mL 環己烷及5.0 mL APTMS混合後,圓底燒瓶中的混合物放入超聲浴中在室溫下保持2 h (日本Sheshin公司製造,操作功率60 W)。然後在索氏提取器中用甲苯提取24 h並在333 K溫度下真空乾燥獲得催化劑。NH(CH2)2NH2/SiO2制備採用同樣的方法。
TBD/SiO2用兩步法制備:採用和氨基丙基硅官能團化的SiO2相同的改性方法,首先用3-氯丙基三甲氧基硅烷對硅改性,然後3-氯丙基三甲氧基硅烷改性的SiO2和 TBD (1.0 g)在環己烷 (40.0 mL)中反應。反應產物超聲震動1 h。之後,在索氏提取器中用甲苯提取24 h並在333 K溫度下真空乾燥獲得催化劑。TAPM/SiO2制備採用同樣的方法。
2.2. 表徵
所有樣品中碳、氮和氫的含量使用Vario EL元素分析儀測定。特異性表面積、總孔容和平均孔徑用N2吸附-解吸法在Micromeritics ASAP-2000孔隙表面積測定儀(Norcross,GA)上測定。表面積用BET法計算,孔徑大小分布用BJH孔徑分析法和其他孔徑的氮吸附-解吸進行比較獲得。用Bruker MSL-400光譜儀記錄29Si核磁共振譜。樣品的鹼基堆積力用 hammett指示劑檢測。
2.3. 催化性能測試
催化性能在75 ml批量反應容器中測定,使用的反應物甲醇和環氧丙烷的物質的量之比為5:1。在403 K的溫度下磁力攪拌反應10 h後, 反應器冷卻到室溫。反應產物經過濾並用離心法和催化劑分離後,用配置氫焰離子化檢測器的氣相色譜進行分析。催化劑用溶劑洗滌後用於回收率測試。
3. 結果與討論
3.1. 多孔硅的氨基官能團改性
帶游離氨基的多孔硅和所有改性樣品中碳、氮和氫的百分含量用元素分析測定(表1)。結果表明,帶游離氨基的多孔硅中不含碳、氮。改性材料中的碳、氮來自有機硅。元素分析表明,用文獻描述的傳統方法[12]制備的接枝有機官能團的有機官能團含量是1.13 mmol/g,遠低於超聲技術制備的樣品中的含量(2. 00 mmol/g) (表1)。這應歸功於超聲能對固體和液體的作用,因為超聲能夠提供一些物化性質的變化,包括空化(液體中形成小泡)和化學反應 (化學反應的加速)等[13]。結果是,粒子大小改性、新制備催化劑的表面凈化 [14,15] 這些過程可以通過在固液界面上引入非均相介質來完成。對於多孔硅的有機改性,超聲引起的空化現象能加速液體在多孔材料和液固界面的小孔中的傳遞速率。結果是,液體有機硅烷類可以和多孔硅內壁上的硅醇官能團良好接觸並短時間內與它們反應,而振盪不能達到這種效果。因此,用超聲完成催化劑的改性過程簡單、快捷。固體催化劑的29Si核磁共振譜分析表明硅烷基化試劑和硅表面上的硅醇官能團之間形成共價鍵(圖1)。109和99 ppm兩個共振頻段可分別使29Si原子核帶上4個Si–O–Si連接(Q4)及3個Si–O–Si連接和一個羥基(Q3) [16]。58和67 ppm兩個共振頻段分別對RSi(OSi)(OH)2和RSi(OSi)3的形成起作用 [17],這表明用有機官能團通過共價鍵連接可成功地使多孔硅有機官能團化。C/N價(分子比)也能反映硅醇官能團和有機硅烷之間的接枝反應進行的程度[18]。NH2/SiO2、NH(CH2)2NH2/SiO2和 TBD/SiO2的C/N價分別是3–3.5、2.5–3.0 和3.3–3.6。 The results also suggested the anchorage of 氨基官能團 by Si–O–Si 鍵。這和29Si核磁共振的結果是一致的。
3.2.催化劑樣品的結構和鹼度
圖2是其他樣品和供試樣品N2吸收比較圖。在毛細管吸附作用下,呈現典型IV型的官能團化催化劑樣品比其他催化劑樣品有清晰的滯後回線。這表明用不同有機硅烷對材料進行官能團化和改性的前後這些材料保留了多孔結構。BET 表面積和孔溶劑隨著接枝有機官能團的百分比的增加逐漸下降(表2)。這可能是由於官能團的存在。接枝到微孔硅上的部分氨基官能團也能導致BET表面積的縮小。有機官能團對NH2/SiO2和NH(CH2)2NH2/SiO2的孔徑的影響很弱。但對於TBD/SiO2和TAPM/ SiO2,或許是由於(CH2)3/TAPM和(CH2)3/TBD官能團具有大的分子骨架,催化劑樣品的平均孔徑分別減小到 7.90 和8.82 nm。然而平均孔徑由於樣品具有較低的有機物百分含量而並未嚴重下降。固體表面的鹼度定義為樣品表面把它吸附的電中性的酸轉化成其共軛鹼的活性。當一種電中性的酸指示劑吸附在非極性溶液中的固體鹼上時,顏色變成了其共軛鹼的顏色,表明固體有足夠的鹼度把電子對轉移到酸上[19]。 帶有大量陽性HH的固體具有強大的鹼性位點。與不同官能團接枝鍵合可形成不同鹼度。如表3所示,TBD/SiO2鹼性最高(PH值= 15.0),而NH2/SiO2和NH(CH2)2NH2/SiO2 的鹼性較低,PH值分別是9.3和9.3-15.0之間。和其他改性樣品相比,TAPM/SiO2鹼性最弱,PH值< 7.2。 因此,樣品的鹼性強度順序是: TBD/SiO2 > NH(CH2)2NH2/SiO2 > NH2/SiO2 > TAPM/SiO2。
3.3. 催化性能
用甲醇和環氧丙烷合成丙二醇甲醚來測試催化活性(表3)。如表 3所示,不使用催化劑時PO轉化率和異構體選擇性 (1-甲氧基-2-丙醇和丙二醇甲醚總量之比)分別達到 27.3 和72.3%。 在使用的催化劑中,帶有游離氨基的多孔硅因其表面硅醇官能團的弱酸性而表現出較低的催化活性。對於錨定的氨基官能團,NH(CH2)2NH2/SiO2和NH2/SiO2 的對於反應10 h後1-甲氧基-2-丙醇的催化合成活性和選擇性比其他催化劑要強。TAPM/SiO2做催化劑時環氧丙烷轉化率較低(89.0%),異構體選擇性是66.6%。 TBD/SiO2、NH(CH2)2NH2/SiO2和NH2/SiO2做時環氧丙烷轉化率很高(>94%),但其異構體選擇性不同。帶有弱鹼性的NH(CH2)2NH2/SiO2 和NH2/SiO2異構體選擇性更高(>82%),而中等鹼性的TBD/SiO2異構體選擇性較低(73.7%)。 對於固體鹼性催化劑, 中等鹼性的催化劑理論上應當具有良好的異構體選擇性 [20]。TBD/SiO2的異構體選擇性較低可能是由於TBD 具有大的分子骨架結構。催化劑可用過濾法很容易地回收並再利用,利用7次後環氧丙烷的轉化率仍然在89%以上,而且在403 K的溫度下多次循環利用後異構體選擇性還能保持不變(表 4),表明接枝到硅表面的氨基官能團在實驗條件下是穩定的。其他樣品的可重復利用性和NH2/SiO2相似。
3.4. 可能的反應機理
無機固相催化劑已被廣泛用於甲醇+環氧丙烷=丙二醇甲醚的合成中[31],該反應中甲氧基離子和質子分別吸附在催化劑表面酸性位點和鹼性位點上,然後甲氧基離子進攻C(1)位點。然而在目前情況下,用於該反應的催化劑特徵是僅有一個反應位點,例如,帶有和均相鹼性催化劑相似的獨有的鹼性反應位點。由於催化劑上不存在路易斯酸位點,反應機理應當不同於那些雙官能團的催化劑。1-甲氧基-2-丙醇在NH2/SiO2上合成的推測機理見線圖1。第一步在甲醇和氨基官能團之間形成H-鍵。在第二步中,由於PO上CH3-官能團的空間位阻效應,甲醇上的O原子進攻C(1) 位點 ,質子吸附在催化劑的鹼性位點上,然後C(1)–O鍵斷裂奪取質子形成 1-甲氧基-2-丙醇。似乎可以合理地認為,NH(CH2)2NH2/SiO2、NH2/SiO2和TBD/SiO2具有更高催化活性是由於其適中的鹼度,不僅能形成H-鍵而且也能很容易斷裂H-鍵。帶有弱鹼性的TAPM/SiO2 僅能形成更多不穩定的H-鍵。 因此,TAPM/SiO2的活性低於其他樣品。 如果這個機理是合理的,那麼有機官能團的大骨架分子結構能夠影響甲醇中O原子的進攻位點。 結果造成了大分子骨架的TBD異構體選擇性較低。因此,具有合適鹼度和簡單分子骨架的有機官能團對於1-甲氧基-2-丙醇的高轉化率和良好的選擇性是非常重要的。
4. 結論
上述結果可得出下列結論:
(1) 高效的超聲技術能成功地制備氨基官能化的多孔硅催化劑;
(2) 表徵結果表明,氨基官能團以共價鍵的形式接枝到硅表面;
(3) 合適鹼度和簡單分子骨架的有機官能團對於1-甲氧基-2-丙醇的高轉化率和良好的選擇性是非常重要的;
(4)催化劑可以通過過濾回收並循環利用而保持恆定的活性。

熱點內容
英語落後的單詞怎麼說 發布:2024-11-01 11:39:44 瀏覽:866
在上午用英語怎麼翻譯成英語 發布:2024-11-01 11:38:50 瀏覽:128
隨著旅行多了翻譯成英語怎麼說 發布:2024-11-01 11:37:02 瀏覽:207
他相當喜歡游泳用英語怎麼說 發布:2024-11-01 11:20:23 瀏覽:473
女王用英語怎麼翻譯成英文怎麼說 發布:2024-11-01 11:06:00 瀏覽:721
用英語怎麼說六年級2班 發布:2024-11-01 10:54:10 瀏覽:351
英語中的繪畫單詞怎麼說 發布:2024-11-01 10:51:53 瀏覽:419
氣密液度計英語怎麼說及英文翻譯 發布:2024-11-01 10:50:20 瀏覽:719
他喜歡看新聞用英語怎麼說 發布:2024-11-01 10:48:18 瀏覽:133
我在四年級幾六班用英語怎麼說 發布:2024-11-01 10:19:45 瀏覽:965